Hybridizations of GRASP with path-relinking

A greedy randomized adaptive search procedure (GRASP) is a metaheuristic for combinatorial optimization. GRASP heuristics are multistart procedures which apply local search to a set of starting solutions generated with a randomized greedy algorithm or semi-greedy method. The best local optimum found over the iterations is returned as the heuristic solution. Path-relinking is a search … Read more

Approximating the Exponential, the Lanczos Method and an \tilde{O}(m)-Time Spectral Algorithm for Balanced Separator

We give a novel spectral approximation algorithm for the balanced separator problem that, given a graph G, a constant balance b \in (0,1/2], and a parameter \gamma, either finds an \Omega(b)-balanced cut of conductance O(\sqrt{\gamma}) in G, or outputs a certificate that all b-balanced cuts in G have conductance at least \gamma, and runs in … Read more

Multiplically independent word systems

Tressler’s Theorem states that the long-standing Hadamard conjecture (concerning the existence of n by n orthogonal matrices with elements of the same absolute value, for n=4k, k=1,2,…) will be settled if we find n-2 pairwise orthogonal words in a hyperplane of words. In this paper we will prove the counterpart of Tressler’s Theorem: the existence … Read more

Optimal Toll Design: A Lower Bound Framework for the Asymmetric Traveling Salesman Problem

We propose a framework of lower bounds for the asymmetric traveling salesman problem (TSP) based on approximating the dynamic programming formulation with diff erent basis vector sets. We discuss how several well-known TSP lower bounds correspond to intuitive basis vector choices and give an economic interpretation wherein the salesman must pay tolls as he travels between … Read more

How tight is the corner relaxation? Insights gained from the stable set problem

The corner relaxation of a mixed-integer linear program is a central concept in cutting plane theory. In a recent paper Fischetti and Monaci provide an empirical assessment of the strength of the corner and other related relaxations on benchmark problems. In this paper we give a precise characterization of the bounds given by these relaxations … Read more

A Primal-Dual Algorithm for Computing a Cost Allocation in the Core of Economic Lot-Sizing Games

We consider the economic lot-sizing game with general concave ordering cost functions. It is well-known that the core of this game is nonempty when the inventory holding costs are linear. The main contribution of this work is a combinatorial, primal-dual algorithm that computes a cost allocation in the core of these games in polynomial time. … Read more

Improved lower bounds for the 2-page crossing numbers of K(m,n) and K(n) via semidefinite programming

The crossing number of a graph is the minimal number of edge crossings achievable in a drawing of the graph in the plane. The crossing numbers of complete and complete bipartite graphs are long standing open questions. In a 2-page drawing of a graph, all vertices are drawn on a circle, and no edge may … Read more

Improved Bounds for Large Scale Capacitated Arc Routing Problem

The Capacitated Arc Routing Problem (CARP) stands among the hardest combinatorial problems to solve or to find high quality solutions. This becomes even more true when dealing with large instances. This paper investigates methods to improve on lower and upper bounds of instances on graphs with over two hundred vertices and three hundred edges, dimensions … Read more

A C++ application programming interface for biased random-key genetic algorithms

In this paper, we describe brkgaAPI, an efficient and easy-to-use object oriented application programming interface for the algorithmic framework of biased random-key genetic algorithms. Our cross-platform library automatically handles the large portion of problem-independent modules that are part of the framework, including population management and evolutionary dynamics, leaving to the user the task of implementing … Read more

Interdiction Branching

This paper introduces interdiction branching, a new branching method for binary integer programs that is designed to overcome the difficulties encountered in solving problems for which branching on variables is inherently weak. Unlike traditional methods, selection of the disjunction in interdiction branching takes into account the best feasible solution found so far. In particular, the … Read more