A Comparison of Lower Bounds for the Symmetric Circulant Traveling Salesman Problem

When the matrix of distances between cities is symmetric and circulant, the traveling salesman problem (TSP) reduces to the so-called symmetric circulant traveling salesman problem (SCTSP), that has applications in the design of reconfigurable networks, and in minimizing wallpaper waste. The complexity of the SCTSP is open, but conjectured to be NP-hard, and we compare … Read more

A new LP algorithm for precedence constrained production scheduling

We present a number of new algorithmic ideas for solving LP relaxations of extremely large precedence constrained production scheduling problems. These ideas are used to develop an implementation that is tested on a variety of real-life, large scale instances; yielding optimal solutions in very practicable CPU time. Citation Unpublished. Columbia University, BHP Billiton, August 2009. … Read more

On the connection of the Sherali-Adams closure and border bases

The Sherali-Adams lift-and-project hierarchy is a fundamental construct in integer programming, which provides successively tighter linear programming relaxations of the integer hull of a polytope. We initiate a new approach to understanding the Sherali-Adams procedure by relating it to methods from computational algebraic geometry. Our main result is a refinement of the Sherali-Adams procedure that … Read more

Trioid: A generalization of matroid and the associated polytope

We consider a generalization of the well known greedy algorithm, called $m$-step greedy algorithm, where $m$ elements are examined in each iteration. When $m=1$ or $2$, the algorithm reduces to the standard greedy algorithm. For $m=3$ we provide a complete characterization of the independence system, called trioid, where the $m$-step greedy algorithm guarantees an optimal … Read more

GRASP with path relinking heuristics for the antibandwidth problem

This paper proposes a linear integer programming formulation and several heuristics based on GRASP and path relinking for the antibandwidth problem. In the antibandwidth problem, one is given an undirected graph with N nodes and must label the nodes in a way that each node receives a unique label from the set {1, 2, …, … Read more

Transmission Expansion Planning with Re-design

Expanding an electrical transmission network requires heavy investments that need to be carefully planned, often at a regional or national level. We study relevant theoretical and practical aspects of transmission expansion planning, set as a bilinear programming problem with mixed 0-1 variables. We show that the problem is NP-hard and that, unlike the so-called Network … Read more

A new semidefinite programming hierarchy for cycles in binary matroids and cuts in graphs

The theta bodies of a polynomial ideal are a series of semidefinite programming relaxations of the convex hull of the real variety of the ideal. In this paper we construct the theta bodies of the vanishing ideal of cycles in a binary matroid. Applied to cuts in graphs, this yields a new hierarchy of semidefinite … Read more

Basis Reduction, and the Complexity of Branch-and-Bound

The classical branch-and-bound algorithm for the integer feasibility problem has exponential worst case complexity. We prove that it is surprisingly efficient on reformulations, in which the columns of the constraint matrix are short, and near orthogonal, i.e. a reduced basis of the generated lattice; when the entries of A (i.e. the dense part of the … Read more

A Branch-and-Cut-and-Price Algorithm for Vertex-Biconnectivity Augmentation

In this paper, the first approach for solving the vertex-biconnectivity augmentation problem (V2AUG) to optimality is proposed. Given a spanning subgraph of an edge-weighted graph, we search for the cheapest subset of edges to augment this subgraph in order to make it vertex-biconnected. The problem is reduced to the augmentation of the corresponding block-cut tree, … Read more

Approximating semidefinite packing problems

In this paper we define semidefinite packing programs and describe an algorithm to approximately solve these problems. Semidefinite packing programs arise in many applications such as semidefinite programming relaxations for combinatorial optimization problems, sparse principal component analysis, and sparse variance unfolding technique for dimension reduction. Our algorithm exploits the structural similarity between semidefinite packing programs … Read more