Real-Time Dispatchability of Bulk Power Systems with Volatile Renewable Generations

The limited predictability and high variability of renewable generations has brought significant challenges on the real-time operation of bulk power systems. This paper proposes the concept of real-time dispatchability (RTDA) of power systems with variable energy resources, which focuses on investigating the impact of operating constraints and the cost of corrective actions on the flexibility … Read more

On the closure of the completely positive semidefinite cone and linear approximations to quantum colorings

We investigate structural properties of the completely positive semidefinite cone, consisting of all the nxn symmetric matrices that admit a Gram representation by positive semidefinite matrices of any size. This cone has been introduced to model quantum graph parameters as conic optimization problems. Recently it has also been used to characterize the set Q of … Read more

A Polyhedral Study of Two-Period Relaxations for Big-Bucket Lot-Sizing Problems: Zero Setup Case

In this paper, we investigate the two-period subproblems proposed by Akartunal{\i} et al. (2014) for big-bucket lot-sizing problems, which have shown a great potential for obtaining strong bounds for these problems. In particular, we study the polyhedral structure of the mixed integer sets related to two relaxations of these subproblems for the special case of … Read more

On imposing connectivity constraints in integer programs

In many network applications, one searches for a connected subset of vertices that exhibits other desirable properties. To this end, this paper studies the connected subgraph polytope of a graph, which is the convex hull of subsets of vertices that induce a connected subgraph. Much of our work is devoted to the study of two … Read more

A Polyhedral Investigation of Star Colorings

Given a weighted undirected graph~$G$ and a nonnegative integer~$k$, the maximum~$k$-star colorable subgraph problem consists of finding an induced subgraph of~$G$ which has maximum weight and can be star colored with at most~$k$ colors; a star coloring does not color adjacent nodes with the same color and avoids coloring any 4-path with exactly two colors. … Read more

Steiner Trees with Degree Constraints: Structural Results and an Exact Solution Approach

In this paper we study the Steiner tree problem with degree constraints. Motivated by an application in computational biology we first focus on binary Steiner trees in which all node degrees are required to be at most three. We then present results for general degree-constrained Steiner trees. It is shown that finding a binary Steiner … Read more

Higher Order Maximum Persistency and Comparison Theorems

We address combinatorial problems that can be formulated as minimization of a partially separable function of discrete variables (energy minimization in graphical models, weighted constraint satisfaction, pseudo-Boolean optimization, 0-1 polynomial programming). For polyhedral relaxations of such problems it is generally not true that variables integer in the relaxed solution will retain the same values in … Read more

Integer programming formulations for the elementary shortest path problem

Given a directed graph G = (V, A) with arbitrary arc costs, the Elementary Shortest Path Problem (ESPP) consists of finding a minimum-cost path between two nodes s and t such that each node of G is visited at most once. If the costs induce negative cycles on G, the problem is NP-hard. In this … Read more

Tight extended formulations for independent set

This paper describes tight extended formulations for independent set. The first formulation is for arbitrary independence systems and has size $O(n+\mu)$, where $\mu$ denotes the number of inclusion-wise maximal independent sets. Consequently, the extension complexity of the independent set polytope of graphs is $O(1.4423^n)$. The size $O(2^\tw n)$ of the second extended formulation depends on … Read more

On the exact separation of rank inequalities for the maximum stable set problem

When addressing the maximum stable set problem on a graph G = (V,E), rank inequalities prescribe that, for any subgraph G[U] induced by U ⊆ V , at most as many vertices as the stability number of G[U] can be part of a stable set of G. These inequalities are very general, as many of … Read more