An algorithmic characterization of P-matricity II: adjustments, refinements, and validation

The paper “An algorithmic characterization of P-matricity” (SIAM Journal on Matrix Analysis and Applications, 34:3 (2013) 904–916, by the same authors as here) implicitly assumes that the iterates generated by the Newton-min algorithm for solving a linear complementarity problem of dimension n, which reads 0 ⩽ x ⊥ (M x + q) ⩾ 0, are … Read more

Projective Splitting with Forward Steps only Requires Continuity

A recent innovation in projective splitting algorithms for monotone operator inclusions has been the development of a procedure using two forward steps instead of the customary proximal steps for operators that are Lipschitz continuous. This paper shows that the Lipschitz assumption is unnecessary when the forward steps are performed in finite-dimensional spaces: a backtracking linesearch … Read more

Deep Neural Network Structures Solving Variational Inequalities

We propose a novel theoretical framework to investigate deep neural networks using the formalism of proximal fixed point methods for solving variational inequalities. We first show that almost all activation functions used in neural networks are actually proximity operators. This leads to an algorithmic model alternating firmly nonexpansive and linear operators. We derive new results … Read more

Conditional Extragradient Algorithms for Solving Constrained Variational Inequalities

In this paper, we generalize the classical extragradient algorithm for solving variational inequality problems by utilizing non-null normal vectors of the feasible set. In particular, conceptual algorithms are proposed with two different linesearches. We then establish convergence results for these algorithms under mild assumptions. Our study suggests that non-null normal vectors may significantly improve convergence … Read more

Weighted LCPs and interior point systems for copositive linear transformations on Euclidean Jordan algebras

In the setting of a Euclidean Jordan algebra V with symmetric cone V_+, corresponding to a linear transformation M, a `weight vector’ w in V_+, and a q in V, we consider the weighted linear complementarity problem wLCP(M,w,q) and (when w is in the interior of V_+) the interior point system IPS(M,w,q). When M is … Read more

A lower bound on the iterative complexity of the Harker and Pang globalization technique of the Newton-min algorithm for solving the linear complementarity problem

The plain Newton-min algorithm for solving the linear complementarity problem (LCP) 0 ≤ x ⊥ (Mx+q) ≥ 0 can be viewed as an instance of the plain semismooth Newton method on the equational version min(x,Mx+q) = 0 of the problem. This algorithm converges for any q when M is an M-matrix, but not when it … Read more

Golden Ratio Algorithms for Variational Inequalities

The paper presents a fully explicit algorithm for monotone variational inequalities. The method uses variable stepsizes that are computed using two previous iterates as an approximation of the local Lipschitz constant without running a linesearch. Thus, each iteration of the method requires only one evaluation of a monotone operator $F$ and a proximal mapping $g$. … Read more

A Special Complementarity Function Revisited

Recently, a local framework of Newton-type methods for constrained systems of equations has been developed which, applied to the solution of Karush-KuhnTucker (KKT) systems, enables local quadratic convergence under conditions that allow nonisolated and degenerate KKT points. This result is based on a reformulation of the KKT conditions as a constrained piecewise smooth system of … Read more

On Integer and MPCC Representability of Affine Sparsity

In addition to sparsity, practitioners of statistics and machine learning often wish to promote additional structures in their variable selection process to incorporate prior knowledge. Borrowing the modeling power of linear systems with binary variables, many of such structures can be faithfully modeled as so-called affine sparsity constraints (ASC). In this note we study conditions … Read more