Gradient Sliding for Composite Optimization

We consider in this paper a class of composite optimization problems whose objective function is given by the summation of a general smooth and nonsmooth component, together with a relatively simple nonsmooth term. We present a new class of first-order methods, namely the gradient sliding algorithms, which can skip the computation of the gradient for … Read more

A proximal multiplier method for separable convex minimization

In this paper, we propose an inexact proximal multiplier method using proximal distances for solving convex minimization problems with a separable structure. The proposed method unified the work of Chen and Teboulle (PCPM method), Kyono and Fukushima (NPCPMM) and Auslender and Teboulle (EPDM) and extends the convergence properties for a class of phi-divergence distances. We … Read more

Calmness of linear programs under perturbations of all data: characterization and modulus

This paper provides operative point-based formulas (only involving the nominal data, and not data in a neighborhood) for computing or estimating the calmness modulus of the optimal set (argmin) mapping in linear optimization under uniqueness of nominal optimal solutions. Our analysis is developed in two different parametric settings. First, in the framework of canonical perturbations … Read more

Application of the Strictly Contractive Peaceman-Rachford Splitting Method to Multi-block Separable Convex Programming

Recently, a strictly contractive Peaceman- Rachford splitting method (SC-PRSM) was proposed to solve a convex minimization model with linear constraints and a separable objective function which is the sum of two functions without coupled variables. We show by an example that the SC-PRSM cannot be directly extended to the case where the objective function is … Read more

Coordinate shadows of semi-definite and Euclidean distance matrices

We consider the projected semi-definite and Euclidean distance cones onto a subset of the matrix entries. These two sets are precisely the input data defining feasible semi-definite and Euclidean distance completion problems. We characterize when these sets are closed, and use the boundary structure of these two sets to elucidate the Krislock-Wolkowicz facial reduction algorithm. … Read more

Zero-Convex Functions, Perturbation Resilience, and Subgradient Projections for Feasibility-Seeking Methods

The convex feasibility problem (CFP) is at the core of the modeling of many problems in various areas of science. Subgradient projection methods are important tools for solving the CFP because they enable the use of subgradient calculations instead of orthogonal projections onto the individual sets of the problem. Working in a real Hilbert space, … Read more

An accelerated HPE-type algorithm for a class of composite convex-concave saddle-point problems

This article proposes a new algorithm for solving a class of composite convex-concave saddle-point problems. The new algorithm is a special instance of the hybrid proximal extragradient framework in which a Nesterov’s accelerated variant is used to approximately solve the prox subproblems. One of the advantages of the new method is that it works for … Read more

Stochastic Quasi-Fejér Block-Coordinate Fixed Point Iterations with Random Sweeping

This work investigates the properties of stochastic quasi-Fejér monotone sequences in Hilbert spaces and emphasizes their pertinence in the study of the convergence of block-coordinate fixed point methods. The iterative methods under investigation feature random sweeping rules to select the blocks of variables that are activated over the course of the iterations and allow for … Read more

Forward – Backward Greedy Algorithms for Atomic – Norm Regularization

In many signal processing applications, one aims to reconstruct a signal that has a simple representation with respect to a certain basis or frame. Fundamental elements of the basis known as “atoms” allow us to define “atomic norms” that can be used to construct convex regularizers for the reconstruction problem. Efficient algorithms are available to … Read more

Convergence Rates with Inexact Nonexpansive Operators

In this paper, we present a convergence rate analysis for the inexact Krasnosel’ski{\u{\i}}-Mann iteration built from nonexpansive operators. Our results include two main parts: we first establish global pointwise and ergodic iteration-complexity bounds, and then, under a metric subregularity assumption, we establish local linear convergence for the distance of the iterates to the set of … Read more