Augmented Lagrangian and Alternating Direction Methods for Convex Optimization: A Tutorial and Some Illustrative Computational Results

The alternating direction of multipliers (ADMM) is a form of augmented Lagrangian algorithm that has experienced a renaissance in recent years due to its applicability to optimization problems arising from “big data” and image processing applications, and the relative ease with which it may be implemented in parallel and distributed computational environments. This paper aims … Read more

A Douglas-Rachford type primal-dual method for solving inclusions with mixtures of composite and parallel-sum type monotone operators

In this paper we propose two different primal-dual splitting algorithms for solving inclusions involving mixtures of composite and parallel-sum type monotone operators which rely on an inexact Douglas-Rachford splitting method, however applied in different underlying Hilbert spaces. Most importantly, the algorithms allow to process the bounded linear operators and the set-valued operators occurring in the … Read more

Convergence analysis of the Peaceman-Rachford splitting method for nonsmooth convex optimization

In this paper, we focus on the convergence analysis for the application of the Peaceman-Rachford splitting method to a convex minimization model whose objective function is the sum of a smooth and nonsmooth convex functions. The sublinear convergence rate in term of the worst-case O(1/t) iteration complexity is established if the gradient of the smooth … Read more

Parallel Coordinate Descent Methods for Big Data Optimization

In this work we show that randomized (block) coordinate descent methods can be accelerated by parallelization when applied to the problem of minimizing the sum of a partially separable smooth convex function and a simple separable convex function. The theoretical speedup, as compared to the serial method, and referring to the number of iterations needed … Read more

Convergence analysis for a primal-dual monotone + skew splitting algorithm with applications to total variation minimization

In this paper we investigate the convergence behavior of a primal-dual splitting method for solving monotone inclusions involving mixtures of composite, Lipschitzian and parallel sum type operators proposed by Combettes and Pesquet in [7]. Firstly, in the particular case of convex minimization problems, we derive convergence rates for the sequence of objective function values by … Read more

AN INEXACT PERTURBED PATH-FOLLOWING METHOD FOR LAGRANGIAN DECOMPOSITION IN LARGE-SCALE SEPARABLE CONVEX OPTIMIZATION

This paper studies an inexact perturbed path-following algorithm in the framework of Lagrangian dual decomposition for solving large-scale separable convex programming problems. Unlike the exact versions considered in the literature, we propose to solve the primal subproblems inexactly up to a given accuracy. This leads to an inexactness of the gradient vector and the Hessian … Read more

COMPUTATIONAL COMPLEXITY OF INEXACT GRADIENT AUGMENTED LAGRANGIAN METHODS: APPLICATION TO CONSTRAINED MPC

We study the computational complexity certification of inexact gradient augmented Lagrangian methods for solving convex optimization problems with complicated constraints. We solve the augmented Lagrangian dual problem that arises from the relaxation of complicating constraints with gradient and fast gradient methods based on inexact first order information. Moreover, since the exact solution of the augmented … Read more

Efficient parallel coordinate descent algorithm for convex optimization problems with separable constraints: application to distributed MPC

In this paper we propose a parallel coordinate descent algorithm for solving smooth convex optimization problems with separable constraints that may arise e.g. in distributed model predictive control (MPC) for linear network systems. Our algorithm is based on block coordinate descent updates in parallel and has a very simple iteration. We prove (sub)linear rate of … Read more

Hardness and Approximation Results for hBcBall Constrained Homogeneous Polynomial Optimization Problems

In this paper, we establish hardness and approximation results for various $L_p$-ball constrained homogeneous polynomial optimization problems, where $p \in [2,\infty]$. Specifically, we prove that for any given $d \ge 3$ and $p \in [2,\infty]$, both the problem of optimizing a degree-$d$ homogeneous polynomial over the $L_p$-ball and the problem of optimizing a degree-$d$ multilinear … Read more