An Accelerated Inexact Dampened Augmented Lagrangian Method for Linearly-Constrained Nonconvex Composite Optimization Problems

This paper proposes and analyzes an accelerated inexact dampened augmented Lagrangian (AIDAL) method for solving linearly-constrained nonconvex composite optimization problems. Each iteration of the AIDAL method consists of: (i) inexactly solving a dampened proximal augmented Lagrangian (AL) subproblem by calling an accelerated composite gradient (ACG) subroutine; (ii) applying a dampened and under-relaxed Lagrange multiplier update; … Read more

MPCC Strategies for Nonsmooth NLPs

This paper develops solution strategies for large-scale nonsmooth optimization problems. We transform nonsmooth programs into equivalent mathematical programs with complementarity constraints (MPCCs), and then employ NLP-based strategies for their so- lution. For this purpose, two NLP formulations based on complementarity relaxations are put forward, one of which applies a parameterized formulation and operates with a … Read more

Inertial-relaxed splitting for composite monotone inclusions

In a similar spirit of the extension of the proximal point method developed by Alves et al. \cite{alvegm20}, we propose in this work an Inertial-Relaxed primal-dual splitting method to address the problem of decomposing the minimization of the sum of three convex functions, one of them being smooth, and considering a general coupling subspace. A … Read more

Comparing Solution Paths of Sparse Quadratic Minimization with a Stieltjes Matrix

This paper studies several solution paths of sparse quadratic minimization problems as a function of the weighing parameter of the bi-objective of estimation loss versus solution sparsity. Three such paths are considered: the “L0-path” where the discontinuous L0-function provides the exact sparsity count; the “L1-path” where the L1-function provides a convex surrogate of sparsity count; … Read more

A Local MM Subspace Method for Solving Constrained Variational Problems in Image Recovery

This article introduces a new Penalized Majorization-Minimization Subspace algorithm (P-MMS) for solving smooth, constrained optimization problems. In short, our approach consists of embedding a subspace algorithm in an inexact exterior penalty procedure. The subspace strategy, combined with a Majoration-Minimization step-size search, takes great advantage of the smoothness of the penalized cost function, while the penalty … Read more

Subgradient methods near active manifolds: saddle point avoidance, local convergence, and asymptotic normality

Nonsmooth optimization problems arising in practice, whether in signal processing, statistical estimation, or modern machine learning, tend to exhibit beneficial smooth substructure: their domains stratify into “active manifolds” of smooth variation, which common proximal algorithms “identify” in finite time. Identification then entails a transition to smooth dynamics, and permits the use of second-order information for … Read more

On Properties of Univariate Max Functions at Local Maximizers

More than three decades ago, Boyd and Balakrishnan established a regularity result for the two-norm of a transfer function at maximizers. Their result extends easily to the statement that the maximum eigenvalue of a univariate real analytic Hermitian matrix family is twice continuously differentiable, with Lipschitz second derivative, at all local maximizers, a property that … Read more

An abstract convergence framework with application to inertial inexact forward-backward methods

In this paper we introduce a novel abstract descent scheme suited for the minimization of proper and lower semicontinuous functions. The proposed abstract scheme generalizes a set of properties that are crucial for the convergence of several first-order methods designed for nonsmooth nonconvex optimization problems. Such properties guarantee the convergence of the full sequence of … Read more

A Semismooth Newton-Type Method for the Nearest Doubly Stochastic Matrix Problem

We study a semismooth Newton-type method for the nearest doubly stochastic matrix problem where both differentiability and nonsingularity of the Jacobian can fail. The optimality conditions for this problem are formulated as a system of strongly semismooth functions. We show that the so-called local error bound condition does not hold for this system. Thus the … Read more

FISTA and Extensions – Review and New Insights

The purpose of this technical report is to review the main properties of an accelerated composite gradient (ACG) method commonly referred to as the Fast Iterative Shrinkage-Thresholding Algorithm (FISTA). In addition, we state a version of FISTA for solving both convex and strongly convex composite minimization problems and derive its iteration complexities to generate iterates … Read more