A lower bound on the iterative complexity of the Harker and Pang globalization technique of the Newton-min algorithm for solving the linear complementarity problem

The plain Newton-min algorithm for solving the linear complementarity problem (LCP) 0 ≤ x ⊥ (Mx+q) ≥ 0 can be viewed as an instance of the plain semismooth Newton method on the equational version min(x,Mx+q) = 0 of the problem. This algorithm converges for any q when M is an M-matrix, but not when it … Read more

A proximal minimization algorithm for structured nonconvex and nonsmooth problems

We propose a proximal algorithm for minimizing objective functions consisting of three summands: the composition of a nonsmooth function with a linear operator, another nonsmooth function, each of the nonsmooth summands depending on an independent block variable, and a smooth function which couples the two block variables. The algorithm is a full splitting method, which … Read more

Stochastic subgradient method converges on tame functions

This work considers the question: what convergence guarantees does the stochastic subgradient method have in the absence of smoothness and convexity? We prove that the stochastic subgradient method, on any semialgebraic locally Lipschitz function, produces limit points that are all first-order stationary. More generally, our result applies to any function with a Whitney stratifiable graph. … Read more

A second order dynamical approach with variable damping to nonconvex smooth minimization

We investigate a second order dynamical system with variable damping in connection with the minimization of a nonconvex differentiable function. The dynamical system is formulated in the spirit of the differential equation which models Nesterov’s accelerated convex gradient method. We show that the generated trajectory converges to a critical point, if a regularization of the … Read more

Gradient Sampling Methods for Nonsmooth Optimization

This paper reviews the gradient sampling methodology for solving nonsmooth, nonconvex optimization problems. An intuitively straightforward gradient sampling algorithm is stated and its convergence properties are summarized. Throughout this discussion, we emphasize the simplicity of gradient sampling as an extension of the steepest descent method for minimizing smooth objectives. We then provide overviews of various … Read more

Golden Ratio Algorithms for Variational Inequalities

The paper presents a fully explicit algorithm for monotone variational inequalities. The method uses variable stepsizes that are computed using two previous iterates as an approximation of the local Lipschitz constant without running a linesearch. Thus, each iteration of the method requires only one evaluation of a monotone operator $F$ and a proximal mapping $g$. … Read more

Fast Multilevel Algorithms for Compressive Principle Component Pursuit

Recovering a low-rank matrix from highly corrupted measurements arises in compressed sensing of structured high-dimensional signals (e.g., videos and hyperspectral images among others). Robust principal component analysis (RPCA), solved via principal component pursuit (PCP), recovers a low-rank matrix from sparse corruptions that are of unknown value and support by decomposing the observation matrix into two … Read more

Block Coordinate Proximal Gradient Method for Nonconvex Optimization Problems: Convergence Analysis

We propose a block coordinate proximal gradient method for a composite minimization problem with two nonconvex function components in the objective while only one of them is assumed to be differentiable. Under some per-block Lipschitz-like conditions based on Bregman distance, but without the global Lipschitz continuity of the gradient of the differentiable function, we prove … Read more

Derivative-Free Superiorization With Component-Wise Perturbations

Superiorization reduces, not necessarily minimizes, the value of a target function while seeking constraints-compatibility. This is done by taking a solely feasibility-seeking algorithm, analyzing its perturbations resilience, and proactively perturbing its iterates accordingly to steer them toward a feasible point with reduced value of the target function. When the perturbation steps are computationally efficient, this … Read more

A Stochastic Semismooth Newton Method for Nonsmooth Nonconvex Optimization

In this work, we present a globalized stochastic semismooth Newton method for solving stochastic optimization problems involving smooth nonconvex and nonsmooth convex terms in the objective function. We assume that only noisy gradient and Hessian information of the smooth part of the objective function is available via calling stochastic first and second order oracles. The … Read more