A strongly convergent proximal bundle method for convex minimization in Hilbert spaces

A key procedure in proximal bundle methods for convex minimization problems is the definition of stability centers, which are points generated by the iterative process that successfully decrease the objective function. In this paper we study a different stability-center classification rule for proximal bundle methods. We show that the proposed bundle variant has three particularly … Read more

On the Proximal Jacobian Decomposition of ALM for Multiple-block Separable Convex Minimization Problems and its Relationship to ADMM

The augmented Lagrangian method (ALM) is a benchmark for solving convex minimization problems with linear constraints. When the objective function of the model under consideration is representable as the sum of some functions without coupled variables, a Jacobian or Gauss-Seidel decomposition is often implemented to decompose the ALM subproblems so that the functions’ properties could … Read more

Practical Inexact Proximal Quasi-Newton Method with Global Complexity Analysis

Recently several methods were proposed for sparse optimization which make careful use of second-order information [11, 30, 17, 3] to improve local convergence rates. These methods construct a composite quadratic approximation using Hessian information, optimize this approximation using a first-order method, such as coordinate descent and employ a line search to ensure sufficient descent. Here … Read more

Differentiability properties of metric projections onto convex sets

It is known that directional differentiability of metric projection onto a closed convex set in a finite dimensional space is not guaranteed. In this paper we discuss sufficient conditions ensuring directional differentiability of such metric projections. The approach is based on a general theory of sensitivity analysis of parameterized optimization problems. ArticleDownload View PDF

An inexact proximal path-following algorithm for constrained convex minimization

Many scientific and engineering applications feature large-scale non-smooth convex minimization problems over convex sets. In this paper, we address an important instance of this broad class where we assume that the non-smooth objective is equipped with a tractable proximity operator and that the convex constraints afford a self-concordant barrier. We provide a new joint treatment … Read more

Variational analysis in psychological modeling

This paper develops some mathematical models arising in psychology and some other areas of behavioral sciences that are formalized via general preferences with variable ordering structures. Our considerations are based on the recent “variational rationality approach” that unifies numerous theories in different branches of behavioral sciences by using, in particular, worthwhile change and stay dynamics … Read more

A First-Order Algorithm for the A-Optimal Experimental Design Problem: A Mathematical Programming Approach

We develop and analyse a first-order algorithm for the A-optimal experimental design problem. The problem is first presented as a special case of a parametric family of optimal design problems for which duality results and optimality conditions are given. Then, two first-order (Frank-Wolfe type) algorithms are presented, accompanied by a detailed time-complexity analysis of the … Read more

Accelerating block-decomposition first-order methods for solving composite saddle-point and two-player Nash equilibrium problems

This article considers the two-player composite Nash equilibrium (CNE) problem with a separable non-smooth part, which is known to include the composite saddle-point (CSP) problem as a special case. Due to its two-block structure, this problem can be solved by any algorithm belonging to the block-decomposition hybrid proximal-extragradient (BD-HPE) framework. The framework consists of a … Read more

On the Convergence of Decentralized Gradient Descent

Consider the consensus problem of minimizing $f(x)=\sum_{i=1}^n f_i(x)$ where each $f_i$ is only known to one individual agent $i$ out of a connected network of $n$ agents. All the agents shall collaboratively solve this problem and obtain the solution subject to data exchanges restricted to between neighboring agents. Such algorithms avoid the need of a … Read more

A feasible active set method for strictly convex problems with simple bounds

A primal-dual active set method for quadratic problems with bound constraints is presented which extends the infeasible active set approach of [K. Kunisch and F. Rendl. An infeasible active set method for convex problems with simple bounds. SIAM Journal on Optimization, 14(1):35-52, 2003]. Based on a guess of the active set, a primal-dual pair (x,α) … Read more