Alternating Direction Methods for Sparse Covariance Selection

The mathematical model of the widely-used sparse covariance selection problem (SCSP) is an NP-hard combinatorial problem, whereas it can be well approximately by a convex relaxation problem whose maximum likelihood estimation is penalized by the $L_1$ norm. This convex relaxation problem, however, is still numerically challenging, especially for large-scale cases. Recently, some efficient first-order methods … Read more

Stability of error bounds for semi-infinite convex constraint systems

In this paper, we are concerned with the stability of the error bounds for semi-infinite convex constraint systems. Roughly speaking, the error bound of a system of inequalities is said to be stable if all its “small” perturbations admit a (local or global) error bound. We first establish subdifferential characterizations of the stability of error … Read more

Estimate sequence methods: extensions and approximations

The approach of estimate sequence offers an interesting rereading of a number of accelerating schemes proposed by Nesterov. It seems to us that this framework is the most appropriate descriptive framework to develop an analysis of the sensitivity of the schemes to approximations. We develop in this work a simple, self-contained, and unified framework for … Read more

Alternating Direction Augmented Lagrangian Methods for semidefinite programming

We present an alternating direction method based on an augmented Lagrangian framework for solving semidefinite programming (SDP) problems in standard form. At each iteration, the algorithm, also known as a two-splitting scheme, minimizes the dual augmented Lagrangian function sequentially with respect to the Lagrange multipliers corresponding to the linear constraints, then the dual slack variables … Read more

SINCO – a greedy coordinate ascent method for sparse inverse covariance selection problem

In this paper, we consider the sparse inverse covariance selection problem which is equivalent to structure recovery of a Markov Network over Gaussian variables. We introduce a simple but efficient greedy algorithm, called {\em SINCO}, for solving the Sparse INverse COvariance problem. Our approach is based on coordinate ascent method which naturally preserves the sparsity … Read more

Composite Proximal Bundle Method

We consider minimization of nonsmooth functions which can be represented as the composition of a positively homogeneous convex function and a smooth mapping. This is a sufficiently rich class that includes max-functions, largest eigenvalue functions, and norm-1 regularized functions. The bundle method uses an oracle that is able to compute separately the function and subgradient … Read more

Facial reduction algorithms for conic optimization problems

To obtain a primal-dual pair of conic programming problems having zero duality gap, two methods have been proposed: the facial reduction algorithm due to Borwein and Wolkowicz [1,2] and the conic expansion method due to Luo, Sturm, and Zhang [5]. We establish a clear relationship between them. Our results show that although the two methods … Read more

The mesh adaptive direct search algorithm for periodic variables

This work analyzes constrained black box optimization in which the functions defining the problem are periodic with respect to some or all the variables. We show that the natural strategy of mapping trial points into the interval defined by the period in the Mesh Adaptive Direct Search (MADS) framework can be easily done in practice, … Read more

A Note on the Behavior of the Randomized Kaczmarz Algorithm of Strohmer and Vershynin

In a recent paper by Strohmer and Vershynin (J. Fourier Anal. Appl. 15:262–278, 2009) a “randomized Kaczmarz algorithm” is proposed for solving consistent systems of linear equations {ai, x = bi }m i=1. In that algorithm the next equation to be used in an iterative Kaczmarz process is selected with a probability proportional to ai2. … Read more

An Implementable Proximal Point Algorithmic Framework for Nuclear Norm Minimization

The nuclear norm minimization problem is to find a matrix with the minimum nuclear norm subject to linear and second order cone constraints. Such a problem often arises from the convex relaxation of a rank minimization problem with noisy data, and arises in many fields of engineering and science. In this paper, we study inexact … Read more