Exact regularization of convex programs

The regularization of a convex program is exact if all solutions of the regularized problem are also solutions of the original problem for all values of the regularization parameter below some positive threshold. For a general convex program, we show that the regularization is exact if and only if a certain selection problem has a … Read more

A Proximal Point Algorithm with Bregman Distances for Quasiconvex Optimization over the Positive Orthant

We present an interior proximal point method with Bregman distance, whose Bregman function is separable and the zone is the interior of the positive orthant, for solving the quasiconvex optimization problem under nonnegative constraints. We establish the well-definedness of the sequence generated by our algorithm and we prove convergence to a solution point when the … Read more

Linear convergence of a modified Frank-Wolfe algorithm for computing minimum volume ellipsoids

We show the linear convergence of a simple first-order algorithm for the minimum-volume enclosing ellipsoid problem and its dual, the D-optimal design problem of statistics. Computational tests confirm the attractive features of this method. CitationOptimization Methods and Software 23 (2008), 5–19. ArticleDownload View PDF

Dini Derivative and a Characterization for Lipschitz and Convex Functions on Riemannian Manifolds

Dini derivative on Riemannian manifold setting is studied in this paper. In addition, a characterization for Lipschitz and convex functions defined on Riemannian manifolds and sufficient optimality conditions for constraint optimization problems in terms of the Dini derivative are given. ArticleDownload View PDF

Consistency of robust portfolio estimators

It is a matter of common knowledge that traditional Markowitz optimization based on sample means and covariances performs poorly in practice. For this reason, diverse attempts were made to improve performance of portfolio optimization. In this paper, we investigate three popular portfolio selection models built upon classical mean-variance theory. The first model is an extension … Read more

Simplex-type algorithm for optimizing a pseudolinear quadratic fractional function over a polytope

Recently Cambini and Carosi described a characterization of pseudolinearity of quadratic fractional functions. A reformulation of their result was given by Rapcsák. Using this reformulation, in this paper we describe an alternative proof of the Cambini–Carosi Theorem. Our proof is shorter than the proof given by Cambini–Carosi and less involved than the proof given by … Read more

A New Class of Interior Proximal Methods for Optimization over the Positive Orthant

In this work we present a family of variable metric interior proximal methods for solving optimization problems under nonnegativity constraints. We define two algorithms, in the inexact and exact forms. The kernels are metrics generated by diagonal matrices in each iteration and the regularization parameters are conveniently chosen to force the iterates to be interior … Read more

Metric regularity and systems of generalized equations

The paper is devoted to a revision of the metric regularity property for mappings between metric or Banach spaces. Some new concepts are introduced: uniform metric regularity, metric regularity along a subspace, strong metric regularity for mappings into product spaces, when each component is perturbed independently. Regularity criteria are established based on a nonlocal version … Read more

Large Scale Portfolio Optimization with Piecewise Linear Transaction Costs

We consider the fundamental problem of computing an optimal portfolio based on a quadratic mean-variance model of the objective function and a given polyhedral representation of the constraints. The main departure from the classical quadratic programming formulation is the inclusion in the objective function of piecewise linear, separable functions representing the transaction costs. We handle … Read more

PROXIMAL THRESHOLDING ALGORITHM FOR MINIMIZATION OVER ORTHONORMAL BASES

The notion of soft thresholding plays a central role in problems from various areas of applied mathematics, in which the ideal solution is known to possess a sparse decomposition in some orthonormal basis. Using convex-analytical tools, we extend this notion to that of proximal thresholding and investigate its properties, providing in particular several characterizations of … Read more