Lagrangean Duality Applied on Vehicle Routing with Time Windows

This paper presents the results of the application of a non-differentiable optimization method in connection with the Vehicle Routing Problem with Time Windows (VRPTW). The VRPTW is an extension of the Vehicle Routing Problem. In the VRPTW the service at each customer must start within an associated time window. The Shortest Path decomposition of the … Read more

The Volume Algorithm revisited: relation with bundle methods

We revise the Volume Algorithm (VA) for linear programming and relate it to bundle methods. When first introduced, VA was presented as a subgradient-like method for solving the original problem in its dual form. In a way similar to the serious/null steps philosophy of bundle methods, VA produces green, yellow or red steps. In order … Read more

A Cutting Plane Algorithm for Large Scale Semidefinite Relaxations

The recent spectral bundle method allows to compute, within reasonable time, approximate dual solutions of large scale semidefinite quadratic 0-1 programming relaxations. We show that it also generates a sequence of primal approximations that converge to a primal optimal solution. Separating with respect to these approximations gives rise to a cutting plane algorithm that converges … Read more

On Numerical Solution of the Maximum Volume Ellipsoid Problem

In this paper we study practical solution methods for finding the maximum-volume ellipsoid inscribing a given full-dimensional polytope in $\Re^n$ defined by a finite set of linear inequalities. Our goal is to design a general-purpose algorithmic framework that is reliable and efficient in practice. To evaluate the merit of a practical algorithm, we consider two … Read more

Complexity of Convex Optimization using Geometry-based Measures and a Reference Point

Our concern lies in solving the following convex optimization problem: minimize cx subject to Ax=b, x \in P, where P is a closed convex set, not necessarily a cone. We bound the complexity of computing an almost-optimal solution of this problem in terms of natural geometry-based measures of the feasible region and the level-set of … Read more

Strong semismoothness of eigenvalues of symmetric matrices and its application to inverse eigenvalue problems

It is well known that the eigenvalues of a real symmetric matrix are not everywhere differentiable. A classical result of Ky Fan states that each eigenvalue of a symmetric matrix is the difference of two convex functions. This directly implies that the eigenvalues of a symmetric matrix are semismooth everywhere. Based on a very recent … Read more

Semi-infinite linear programming approaches to semidefinite programming problems

Interior point methods, the traditional methods for the $SDP$, are fairly limited in the sizes of problems they can handle. This paper deals with an $LP$ approach to overcome some of these shortcomings. We begin with a semi-infinite linear programming formulation of the $SDP$ and discuss the issue of its discretization in some detail. We … Read more

On the Primal-Dual Geometry of Level Sets in Linear and Conic Optimization

For a conic optimization problem: minimize cx subject to Ax=b, x \in C, we present a geometric relationship between the maximum norms of the level sets of the primal and the inscribed sizes of the level sets of the dual (or the other way around). Citation MIT Operations Research Center Working Paper Article Download View … Read more

On the Riemannian Geometry Defined by Self-Concordant Barriers and Interior-Point Methods

We consider the Riemannian geometry defined on a convex set by the Hessian of a self-concordant barrier function, and its associated geodesic curves. These provide guidance for the construction of efficient interior-point methods for optimizing a linear function over the intersection of the set with an affine manifold. We show that algorithms that follow the … Read more

Polynomial interior point cutting plane methods

Polynomial cutting plane methods based on the logarithmic barrier function and on the volumetric center are surveyed. These algorithms construct a linear programming relaxation of the feasible region, find an appropriate approximate center of the region, and call a separation oracle at this approximate center to determine whether additional constraints should be added to the … Read more