Weak subgradient algorithm for solving nonsmooth nonconvex unconstrained optimization problems

This paper presents a weak subgradient based method for solving nonconvex unconstrained optimization problems. The method uses a weak subgradient of the objective function at a current point, to generate a new one at every iteration. The concept of the weak subgradient is based on the idea of using supporting cones to the graph of … Read more

Fast and Faster Convergence of SGD for Over-Parameterized Models and an Accelerated Perceptron

Modern machine learning focuses on highly expressive models that are able to fit or interpolate the data completely, resulting in zero training loss. For such models, we show that the stochastic gradients of common loss functions satisfy a strong growth condition. Under this condition, we prove that constant step-size stochastic gradient descent (SGD) with Nesterov … Read more

An optimal control theory for accelerated optimization

Accelerated optimization algorithms can be generated using a double-integrator model for the search dynamics imbedded in an optimal control problem. Citation unpublished Article Download View An optimal control theory for accelerated optimization

Exploiting Sparsity for Semi-Algebraic Set Volume Computation

We provide a systematic deterministic numerical scheme to approximate the volume (i.e. the Lebesgue measure) of a basic semi-algebraic set whose description follows a sparsity pattern. As in previous works (without sparsity), the underlying strategy is to consider an infinite-dimensional linear program on measures whose optimal value is the volume of the set. This is … Read more

Subdifferentials and SNC property of scalarization functionals with uniform level sets and applications

This paper deals with necessary conditions for minimal solutions of constrained and unconstrained optimization problems with respect to general domination sets by using a well-known nonlinear scalarization functional with uniform level sets (called Gerstewitz’ functional in the literature). The primary objective of this work is to establish revised formulas for basic and singular subdifferentials of … Read more

Active-set Newton methods and partial smoothness

Diverse optimization algorithms correctly identify, in finite time, intrinsic constraints that must be active at optimality. Analogous behavior extends beyond optimization to systems involving partly smooth operators, and in particular to variational inequalities over partly smooth sets. As in classical nonlinear programming, such active-set structure underlies the design of accelerated local algorithms of Newton type. … Read more

Generalized subdifferentials of spectral functions over Euclidean Jordan algebras

This paper is devoted to the study of generalized subdifferentials of spectral functions over Euclidean Jordan algebras. Spectral functions appear often in optimization problems playing the role of “regularizer”, “barrier”, “penalty function” and many others. We provide formulae for the regular, approximate and horizon subdifferentials of spectral functions. In addition, under local lower semicontinuity, we … Read more

The condition number of a function relative to a set

The condition number of a differentiable convex function, namely the ratio of its smoothness to strong convexity constants, is closely tied to fundamental properties of the function. In particular, the condition number of a quadratic convex function is the square of the aspect ratio of a canonical ellipsoid associated to the function. Furthermore, the condition … Read more

Fast Robust Methods for Singular State-Space Models

State-space models are used in a wide range of time series analysis applications. Kalman filtering and smoothing are work-horse algorithms in these settings. While classic algorithms assume Gaussian errors to simplify estimation, recent advances use a broad range of optimization formulations to allow outlier-robust estimation, as well as constraints to capture prior information. Here we … Read more

Local minimizers of semi-algebraic functions

Consider a semi-algebraic function $f\colon\mathbb{R}^n \to {\mathbb{R}},$ which is continuous around a point $\bar{x} \in \mathbb{R}^n.$ Using the so–called {\em tangency variety} of $f$ at $\bar{x},$ we first provide necessary and sufficient conditions for $\bar{x}$ to be a local minimizer of $f,$ and then in the case where $\bar{x}$ is an isolated local minimizer of … Read more