A faster dual algorithm for the Euclidean minimum covering ball problem

Dearing and Zeck presented a dual algorithm for the problem of the minimum covering ball in $\mathbb{R}^n$. Each iteration of their algorithm has a computational complexity of at least $\mathcal O(n^3)$. In this paper we propose a modification to their algorithm that, together with an implementation that uses updates to the QR factorization of a … Read more

On efficiently solving the subproblems of a level-set method for fused lasso problems

In applying the level-set method developed in [Van den Berg and Friedlander, SIAM J. on Scientific Computing, 31 (2008), pp.~890–912 and SIAM J. on Optimization, 21 (2011), pp.~1201–1229] to solve the fused lasso problems, one needs to solve a sequence of regularized least squares subproblems. In order to make the level-set method practical, we develop … Read more

Chambolle-Pock and Tseng’s methods: relationship and extension to the bilevel optimization

In the first part of the paper we focus on two problems: (a) regularized least squares and (b) nonsmooth minimization over an affine subspace. For these problems we establish the connection between the primal-dual method of Chambolle-Pock and Tseng’s proximal gradient method. For problem (a) it allows us to derive a nonergodic $O(1/k^2)$ convergence rate … Read more

Proximal ADMM with larger step size for two-block separable convex programs

The alternating direction method of multipliers (ADMM) is a benchmark for solving two-block separable convex programs, and it finds more and more applications in many areas. However, as other first-order methods, ADMM also suffers from low convergence. In this paper, to accelerate the convergence of ADMM, we relax the restriction region of the Fortin and … Read more

First Order Methods Beyond Convexity and Lipschitz Gradient Continuity with Applications to Quadratic Inverse Problems

We focus on nonconvex and nonsmooth minimization problems with a composite objective, where the differentiable part of the objective is freed from the usual and restrictive global Lipschitz gradient continuity assumption. This longstanding smoothness restriction is pervasive in first order methods (FOM), and was recently circumvent for convex composite optimization by Bauschke, Bolte and Teboulle, … Read more

Improved Conic Reformulations for K-means Clustering

In this paper, we show that the popular K-means clustering problem can equivalently be reformulated as a conic program of polynomial size. The arising convex optimization problem is NP-hard, but amenable to a tractable semidefinite programming (SDP) relaxation that is tighter than the current SDP relaxation schemes in the literature. In contrast to the existing … Read more

On Glowinski’s Open Question of Alternating Direction Method of Multipliers

The alternating direction method of multipliers (ADMM) was proposed by Glowinski and Marrocco in 1975; and it has been widely used in a broad spectrum of areas, especially in some sparsity-driven application domains. In 1982, Fortin and Glowinski suggested to enlarge the range of the step size for updating the dual variable in ADMM from … Read more

Local Convergence of the Heavy-ball Method and iPiano for Non-convex Optimization

A local convergence result for abstract descent methods is proved. The sequence of iterates is attracted by a local (or global) minimum, stays in its neighborhood and converges within this neighborhood. This result allows algorithms to exploit local properties of the objective function. In particular, the abstract theory in this paper applies to the inertial … Read more

Inexact scalarization proximal methods for multiobjective quasiconvex minimization on Hadamard manifold

In this paper we extend naturally the scalarization proximal point method to solve multiobjective unconstrained minimization problems, proposed by Apolinario et al.(2016), from Euclidean spaces to Hadamard manifolds for locally Lipschitz and quasiconvex vector objective functions. Moreover, we present a convergence analysis, under some mild assumptions on the multiobjective function, for two inexact variants of … Read more

Distributed Block-diagonal Approximation Methods for Regularized Empirical Risk Minimization

Designing distributed algorithms for empirical risk minimization (ERM) has become an active research topic in recent years because of the practical need to deal with the huge volume of data. In this paper, we propose a general framework for training an ERM model via solving its dual problem in parallel over multiple machines. Our method … Read more