Block Coordinate Proximal Gradient Method for Nonconvex Optimization Problems: Convergence Analysis

We propose a block coordinate proximal gradient method for a composite minimization problem with two nonconvex function components in the objective while only one of them is assumed to be differentiable. Under some per-block Lipschitz-like conditions based on Bregman distance, but without the global Lipschitz continuity of the gradient of the differentiable function, we prove … Read more

An algorithm for solving infinite horizon Markov dynamic programmes

We consider a general class of infinite horizon dynamic programmes where state and control sets are convex and compact subsets of Euclidean spaces and (convex) costs are discounted geometrically. The aim of this work is to provide a convergence result for these problems under as few restrictions as possible. Under certain assumptions on the cost … Read more

BBCPOP: A Sparse Doubly Nonnegative Relaxation of Polynomial Optimization Problems with Binary, Box and Complementarity Constraints

The software package BBCPOP is a MATLAB implementation of a hierarchy of sparse doubly nonnegative (DNN) relaxations of a class of polynomial optimization (minimization) problems (POPs) with binary, box and complementarity (BBC) constraints. Given a POP in the class and a relaxation order, BBCPOP constructs a simple conic optimization problem (COP), which serves as a … Read more

User Manual for BBCPOP: A Sparse Doubly Nonnegative Relaxation of Polynomial Optimization Problems with Binary, Box and Complementarity Constraints

BBCPOP proposed in [4] is a MATLAB implementation of a hierarchy of sparse doubly nonnegative (DNN) relaxations of a class of polynomial optimization (minimization) problems (POPs) with binary, box and complementarity constraints. Given a POP in the class and a relaxation order (or a hierarchy level), BBCPOP constructs a simple conic optimization problem (COP), which … Read more

Derivative-Free Superiorization With Component-Wise Perturbations

Superiorization reduces, not necessarily minimizes, the value of a target function while seeking constraints-compatibility. This is done by taking a solely feasibility-seeking algorithm, analyzing its perturbations resilience, and proactively perturbing its iterates accordingly to steer them toward a feasible point with reduced value of the target function. When the perturbation steps are computationally efficient, this … Read more

Stochastic model-based minimization of weakly convex functions

We consider an algorithm that successively samples and minimizes stochastic models of the objective function. We show that under weak-convexity and Lipschitz conditions, the algorithm drives the expected norm of the gradient of the Moreau envelope to zero at the rate $O(k^{-1/4})$. Our result yields the first complexity guarantees for the stochastic proximal point algorithm … Read more

Entropic proximal operators for nonnegative trigonometric polynomials

Signal processing applications of semidefinite optimization are often rooted in sum-of-squares representations of nonnegative trigonometric polynomials. Interior-point solvers for semidefinite optimization can handle constraints of this form with a per-iteration-complexity that is cubic in the degree of the trigonometric polynomial. The purpose of this paper is to discuss first-order methods with a lower complexity per … Read more

Projective Splitting with Forward Steps: Asynchronous and Block-Iterative Operator Splitting

This work is concerned with the classical problem of finding a zero of a sum of maximal monotone operators. For the projective splitting framework recently proposed by Combettes and Eckstein, we show how to replace the fundamental subproblem calculation using a backward step with one based on two forward steps. The resulting algorithms have the … Read more

A Stochastic Semismooth Newton Method for Nonsmooth Nonconvex Optimization

In this work, we present a globalized stochastic semismooth Newton method for solving stochastic optimization problems involving smooth nonconvex and nonsmooth convex terms in the objective function. We assume that only noisy gradient and Hessian information of the smooth part of the objective function is available via calling stochastic first and second order oracles. The … Read more

SOS-Convex Lyapunov Functions and Stability of Difference Inclusions

We introduce the concept of sos-convex Lyapunov functions for stability analysis of both linear and nonlinear difference inclusions (also known as discrete-time switched systems). These are polynomial Lyapunov functions that have an algebraic certificate of convexity and that can be efficiently found via semidefinite programming. We prove that sos-convex Lyapunov functions are universal (i.e., necessary … Read more