Quantitative Stability Analysis for Minimax Distributionally Robust RiskOptimization

This paper considers distributionally robust formulations of a two stage stochastic programming problem with the objective of minimizing a distortion risk of the minimal cost incurred at the second stage. We carry out stability analysis by looking into variations of the ambiguity set under the Wasserstein metric, decision spaces at both stages and the support … Read more

On level regularization with normal solutions in decomposition methods for multistage stochastic programming problems

We consider well-known decomposition techniques for multistage stochastic programming and a new scheme based on normal solutions for stabilizing iterates during the solution process. The given algorithms combine ideas from finite perturbation of convex programs and level bundle methods to regularize the so-called forward step of these decomposition methods. Numerical experiments on a hydrothermal scheduling … Read more

Geometric descent method for convex composite minimization

In this paper, we extend the geometric descent method recently proposed by Bubeck, Lee and Singh to tackle nonsmooth and strongly convex composite problems. We prove that our proposed algorithm, dubbed geometric proximal gradient method (GeoPG), converges with a linear rate $(1-1/\sqrt{\kappa})$ and thus achieves the optimal rate among first-order methods, where $\kappa$ is the … Read more

An extension of Chubanov’s algorithm to symmetric cones

In this work we present an extension of Chubanov’s algorithm to the case of homogeneous feasibility problems over a symmetric cone K. As in Chubanov’s method for linear feasibility problems, the algorithm consists of a basic procedure and a step where the solutions are confined to the intersection of a half-space and K. Following an … Read more

The p-cones in dimension n>=3 are not homogeneous when p \neq 2

Using the T-algebra machinery we show that the only strictly convex homogeneous cones in R^n with n >= 3 are the 2-cones, also known as Lorentz cones or second order cones. In particular, this shows that the p-cones are not homogeneous when p is not 2, 1 < p <\infty and n >= 3, thus … Read more

A Limited-Memory Quasi-Newton Algorithm for Bound-Constrained Nonsmooth Optimization

We consider the problem of minimizing a continuous function that may be nonsmooth and nonconvex, subject to bound constraints. We propose an algorithm that uses the L-BFGS quasi-Newton approximation of the problem’s curvature together with a variant of the weak Wolfe line search. The key ingredient of the method is an active-set selection strategy that … Read more

Efficiency of minimizing compositions of convex functions and smooth maps

We consider the problem of minimizing a sum of a convex function and a composition of a convex function with a smooth map. Important examples include exact penalty formulations of nonlinear programs and nonlinear least squares problems with side constraints. The basic algorithm we rely on is the well-known prox-linear method, which in each iteration … Read more

Fixing and extending some recent results on the ADMM algorithm

We first point out several flaws in the recent paper {\it [R. Shefi, M. Teboulle: Rate of convergence analysis of decomposition methods based on the proximal method of multipliers for convex minimization, SIAM J. Optim. 24, 269–297, 2014]} that proposes two ADMM-type algorithms for solving convex optimization problems involving compositions with linear operators and show … Read more