Sensitivity analysis of the optimal solutions to Huff-type competitive location and design problems

A chain wants to set up a single new facility in a planar market where similar facilities of competitors, and possibly of its own chain, are already present. Fixed demand points split their demand probabilistically over all facilities in the market proportionally with their attraction to each facility, determined by the different perceived qualities of … Read more

A genetic algorithm for a global optimization problem arising in the detection of gravitational waves

The detection of gravitational waves is a long-awaited event in modern physics and, to achieve this challenging goal, detectors with high sensitivity are being used or are under development. In order to extract gravitational signals, emitted by coalescing binary systems of compact objects (neutron stars and/or black holes), from noisy data obtained by interferometric detectors, … Read more

A Framework for Optimization under Ambiguity

In this paper, single stage stochastic programs with ambiguous distributions for the involved random variables are considered. Though the true distribution is unknown, existence of a reference measure P enables the construction of non-parametric ambiguity sets as Kantorovich balls around P. The resulting robustified problems are infinite optimization problems and can therefore not be solved … Read more

An SDP-based divide-and-conquer algorithm for large scale noisy anchor-free graph realization

We propose the DISCO algorithm for graph realization in $\real^d$, given sparse and noisy short-range inter-vertex distances as inputs. Our divide-and-conquer algorithm works as follows. When a group has a sufficiently small number of vertices, the basis step is to form a graph realization by solving a semidefinite program. The recursive step is to break … Read more

Value-at-Risk optimization using the difference of convex algorithm

Value-at-Risk (VaR) is an integral part of contemporary financial regulations. Therefore, the measurement of VaR and the design of VaR optimal portfolios are highly relevant problems for financial institutions. This paper treats a VaR constrained Markowitz style portfolio selection problem when the distribution of returns of the considered assets are given in the form of … Read more

Max-min separability: incremental approach and application to supervised data classification

A new algorithm for the computation of a piecewise linear function separating two finite point sets in $n$-dimensional space is developed and the algorithm is applied to solve supervised data classification problems. The algorithm computes hyperplanes incrementally and it finds as many hyperplanes as necessary to separate two sets with respect to some tolerance. An … Read more

Jamming communication networks under complete uncertainty

This paper describes a problem of interdicting/jamming wireless communication networks in uncertain environments. Jamming communication networks is an important problem with many applications, but has received relatively little attention in the literature. Most of the work on network interdiction is focused on preventing jamming and analyzing network vulnerabilities. Here, we consider the case where there … Read more

Optimization of Flexural capacity Of Reinforced fibrous concrete Beams Using Genetic Algorithm

In this paper formulation and solution technique using Genetic algorithms (GAs) for Optimizing the flexural capacity of steel fiber reinforced concrete beams, with random orientated steel fibers, is presented along with identification of design variables, objective function and constraints. The most important factors which influence the ultimate load carrying capacity of FRC are the volume … Read more

Efficient and cheap bounds for (standard) quadratic optimization

A standard quadratic optimization problem (StQP) consists in minimizing a quadratic form over a simplex. A number of problems can be transformed into a StQP, including the general quadratic problem over a polytope and the maximum clique problem in a graph. In this paper we present several polynomial-time bounds for StQP ranging from very simple … Read more

Solving a Quantum Chemistry problem with Deterministic Global Optimization

The Hartree-Fock method is well known in quantum chemistry, and widely used to obtain atomic and molecular eletronic wave functions, based on the minimization of a functional of the energy. This gives rise to a multi-extremal, nonconvex, polynomial optimization problem. We give a novel mathematical programming formulation of the problem, which we solve by using … Read more