Solving Multiobjective Mixed Integer Convex Optimization Problems

Multiobjective mixed integer convex optimization refers to mathematical programming problems where more than one convex objective function needs to be optimized simultaneously and some of the variables are constrained to take integer values. We present a branch-and-bound method based on the use of properly defined lower bounds. We do not simply rely on convex relaxations, … Read more

Improved convergence analysis of Lasserre’s measure-based upper bounds for polynomial minimization on compact sets

We consider the problem of computing the minimum value of a polynomial f over a compact set K⊆R^n, which can be reformulated as finding a probability measure ν on K minimizing the expected value of f over K. Lasserre showed that it suffices to consider such measures of the form ν=qμ, where q is a … Read more

A Class of Stochastic Variance Reduced Methods with an Adaptive Stepsize

Stochastic variance reduced methods have recently surged into prominence for solving large scale optimization problems in the context of machine learning. Tan, Ma and Dai et al. first proposed the new stochastic variance reduced gradient (SVRG) method with the Barzilai-Borwein (BB) method to compute step sizes automatically, which performs well in practice. On this basis, … Read more

Using two-dimensional Projections for Stronger Separation and Propagation of Bilinear Terms

One of the most fundamental ingredients in mixed-integer nonlinear programming solvers is the well- known McCormick relaxation for a product of two variables x and y over a box-constrained domain. The starting point of this paper is the fact that the convex hull of the graph of xy can be much tighter when computed over … Read more

An Enhanced Logical Benders Approach for Linear Programs with Complementarity

This work extends the ones of Hu et al. (2008) and Bai et al. (2013) of a logical Benders approach for globally solving Linear Programs with Complementarity Constraints. By interpreting the logical Benders method as a reversed branch-and-bound method, where the whole exploration procedure starts from the leaf nodes in an enumeration tree, we provide … Read more

New bounds for nonconvex quadratically constrained quadratic programming

In this paper, we study some bounds for nonconvex quadratically constrained quadratic programs. Recently, Zamani has proposed a dual for linearly constrained quadratic programs, where Lagrange multipliers are affine functions. By using this method, we propose two types of bounds for quadratically constrained quadratic pro- grams, quadratic and cubic bounds. For quadratic bounds, we use … Read more

Tangencies and Polynomial Optimization

Given a polynomial function $f \colon \mathbb{R}^n \rightarrow \mathbb{R}$ and a unbounded basic closed semi-algebraic set $S \subset \mathbb{R}^n,$ in this paper we show that the conditions listed below are characterized exactly in terms of the so-called {\em tangency variety} of $f$ on $S$: (i) The $f$ is bounded from below on $S;$ (ii) The … Read more

A study of rank-one sets with linear side constraints and application to the pooling problem

We study sets defined as the intersection of a rank-1 constraint with different choices of linear side constraints. We identify different conditions on the linear side constraints, under which the convex hull of the rank-1 set is polyhedral or second-order cone representable. In all these cases, we also show that a linear objective can be … Read more

Convexification of polynomial optimization problems by means of monomial patterns

Convexification is a core technique in global polynomial optimization. Currently, two different approaches compete in practice and in the literature. First, general approaches rooted in nonlinear programming. They are comparitively cheap from a computational point of view, but typically do not provide good (tight) relaxations with respect to bounds for the original problem. Second, approaches … Read more

Application of outer approximation to forecasting losses and scenarios in the target of portfolios with high of nonlinear risk

The purpose of this paper is to find appropriate solutions to concave quadratic programming using outer approximation algorithm, which is one of the algorithm of global optimization, in the target of the strong of concavity of object function i.e. high of nonlinear risk of portfolio. Firstly, my target model is a mathematical optimization programming to … Read more