A note on Legendre-Fenchel conjugate of the product of two positive-definite quadratic forms

The Legendre-Fenchel conjugate of the product of two positive-definite quadratic forms was posted as an open question in the field of nonlinear analysis and optimization by Hiriart-Urruty [`Question 11′ in {\it SIAM Review} 49, 255-273, (2007)]. Under a convex assumption on the function, it was answered by Zhao [SIAM J. Matrix Analysis $\&$ Applications, 31(4), … Read more

Globally convergent DC trust-region methods

In this paper, we investigate the use of DC (Difference of Convex functions) models and algorithms in the solution of nonlinear optimization problems by trust-region methods. We consider DC local models for the quadratic model of the objective function used to compute the trust-region step, and apply a primal-dual subgradient method to the solution of … Read more

Faster, but Weaker, Relaxations for Quadratically Constrained Quadratic Programs

We introduce a new relaxation framework for nonconvex quadratically constrained quadratic programs (QCQPs). In contrast to existing relaxations based on semidefinite programming (SDP), our relaxations incorporate features of both SDP and second order cone programming (SOCP) and, as a result, solve more quickly than SDP. A downside is that the calculated bounds are weaker than … Read more

An inexact proximal bundle method with applications to convex conic programming

We present an inexact bundle method for minimizing an unconstrained convex sup-function with an open domain. Under some mild assumptions, we reformulate a convex conic programming problem as such problem in terms of the support function. This method is a first-order method, hence it requires much less computational cost in each iteration than second-order approaches … Read more

An Enhanced Spatial Branch-and-Bound Method in Global Optimization with Nonconvex Constraints

We discuss some difficulties in determining valid upper bounds in spatial branch-and-bound methods for global minimization in the presence of nonconvex constraints. In fact, two examples illustrate that standard techniques for the construction of upper bounds may fail in this setting. Instead, we propose to perturb infeasible iterates along Mangasarian-Fromovitz directions to feasible points whose … Read more

Analytical formulas for calculating the extremal ranks and inertias of + BXB^{*}$ when $ is a fixed-rank Hermitian matrix

The rank of a matrix and the inertia of a square matrix are two of the most generic concepts in matrix theory for describing the dimension of the row/column vector space and the sign distribution of the eigenvalues of the matrix. Matrix rank and inertia optimization problems are a class of discontinuous optimization problems, in … Read more

Quadratic Outer Approximation for Convex Integer Programming

We present a quadratic outer approximation scheme for solving general convex integer programs, where suitable quadratic approximations are used to underestimate the objective function instead of classical linear approximations. As a resulting surrogate problem we consider the problem of minimizing a function given as the maximum of finitely many convex quadratic functions having the same … Read more

Biased and unbiased random-key genetic algorithms: An experimental analysis

We study the runtime performance of three types of random-key genetic algorithms: the unbiased algorithm of Bean (1994); the biased algorithm of Gonçalves and Resende (2011); and a greedy version of Bean’s algorithm on 12 instances from four types of covering problems: general-cost set covering, Steiner triple covering, general-cost set K-covering, and unit-cost covering by … Read more

BILEVEL OPTIMIZATION AS A REGULARIZATION APPROACH TO PSEUDOMONOTONE EQUILIBRIUM PROBLEMS

We investigate some properties of an inexact proximal point method for pseudomonotone equilibrium problems in a real Hilbert space. Un- like monotone case, in pseudomonotone case, the regularized subprob- lems may not be strongly monotone, even not pseudomonotone. How- ever, every proximal trajectory weakly converges to the same limit, We use these properties to extend … Read more

STOCHASTIC OPTIMIZATION OVER A PARETO SET ASSOCIATED WITH A STOCHASTIC MULTI-OBJECTIVE OPTIMIZATION PROBLEM

We deal with the problem of minimizing the expectation of a real valued random function over the weakly Pareto or Pareto set associated with a Stochastic Multi-Objective Optimization Problem (SMOP) whose objectives are expectations of random functions. Assuming that the closed form of these expectations is difficult to obtain, we apply the Sample Average Approximation … Read more