A Complete Characterization of the Gap between Convexity and SOS-Convexity

Our first contribution in this paper is to prove that three natural sum of squares (sos) based sufficient conditions for convexity of polynomials via the definition of convexity, its first order characterization, and its second order characterization are equivalent. These three equivalent algebraic conditions, henceforth referred to as sos-convexity, can be checked by semidefinite programming … Read more

Algorithmic aspects of sums of hermitian squares of noncommutative polynomials

This paper presents an algorithm and its implementation in the software package NCSOStools for finding sums of hermitian squares and commutators decompositions for polynomials in noncommuting variables. The algorithm is based on noncommutative analogs of the classical Gram matrix method and the Newton polytope method, which allows us to use semidefinite programming. Throughout the paper … Read more

Global optimization of pipe networks by the interval analysis approach: the Belgium network case

We show that global optimization techniques, based on interval analysis and constraint propagation, succeed in solving the classical problem of optimization of the Belgium gas network. Citation Published as Inria Research report RR-7796, November 2011. Article Download View Global optimization of pipe networks by the interval analysis approach: the Belgium network case

Global Optimization of Mixed-Integer Quadratically-Constrained Quadratic Programs (MIQCQP) through Piecewise-Linear and Edge-Concave Relaxations

We propose a deterministic global optimization approach, whose novel contributions are rooted in the edge-concave and piecewise-linear underestimators, to address nonconvex mixed-integer quadratically-constrained quadratic programs (MIQCQP) to epsilon-global optimality. The facets of low-dimensional (n < 4) edge-concave aggregations dominating the termwise relaxation of MIQCQP are introduced at every node of a branch-and-bound tree. Concave multivariable ... Read more

An extension of the elimination method for a sparse SOS polynomial

We propose a method to reduce the sizes of SDP relaxation problems for a given polynomial optimization problem (POP). This method is an extension of the elimination method for a sparse SOS polynomial in [Kojima et al., Mathematical Programming] and exploits sparsity of polynomials involved in a given POP. In addition, we show that this … Read more

Approximate spectral factorization for design of efficient sub-filter sequences

A well-known approach to the design of computationally efficient filters is to use spectral factorization, i.e. a decomposition of a filter into a sequence of sub-filters. Due to the sparsity of the sub-filters, the typical processing speedup factor is within the range 1-10 in 2D, and for 3D it achieves 10-100. The design of such … Read more

Optimization over the Efficient Set of a Bicriteria Convex Programming Problem

The problem of optimizing a real function over the efficient set of a multiple objective programming problem arises in a variety of applications. In this article, we propose an outer approximation algorithm for maximizing a function $h(x) = \varphi(f(x))$ over the efficient set $X_E$ of the bi-criteria convex programming problem $ {\rm Vmin} \{f(x)=(f_1(x), f_2(x))^T … Read more

Welfare-Maximizing Correlated Equilibria using Kantorovich Polynomials with Sparsity

We propose an algorithm that computes the epsilon-correlated equilibria with global-optimal (i.e., maximum) expected social welfare for single stage polynomial games. We first derive an infinite-dimensional formulation of epsilon-correlated equilibria using Kantorovich polynomials and re-express it as a polynomial positivity constraint. In addition, we exploit polynomial sparsity to achieve a leaner problem formulation involving Sum-Of-Squares … Read more

An FPTAS for Optimizing a Class of Low-Rank Functions Over a Polytope

We present a fully polynomial time approximation scheme (FPTAS) for optimizing a very general class of nonlinear functions of low rank over a polytope. Our approximation scheme relies on constructing an approximate Pareto-optimal front of the linear functions which constitute the given low-rank function. In contrast to existing results in the literature, our approximation scheme … Read more

Constrained Derivative-Free Optimization on Thin Domains

Many derivative-free methods for constrained problems are not efficient for minimizing functions on “thin” domains. Other algorithms, like those based on Augmented Lagrangians, deal with thin constraints using penalty-like strategies. When the constraints are computationally inexpensive but highly nonlinear, these methods spend many potentially expensive objective function evaluations motivated by the difficulties of improving feasibility. … Read more