Spectral Stochastic Gradient Method with Additional Sampling for Finite and Infinite Sums

In this paper, we propose a new stochastic gradient method for numerical minimization of finite sums. We also propose a modified version of this method applicable on more general problems referred to as infinite sum problems, where the objective function is in the form of mathematical expectation. The method is based on a strategy to … Read more

Global Optimization Algorithm through High-Resolution Sampling

We present an optimization algorithm that can identify a global minimum of a potentially nonconvex smooth function with high probability, assuming the Gibbs measure of the potential satisfies a logarithmic Sobolev inequality. Our contribution is twofold: on the one hand we propose a global optimization method, which is built on an oracle sampling algorithm producing … Read more

A Markovian Model for Learning-to-Optimize

We present a probabilistic model for stochastic iterative algorithms with the use case of optimization algorithms in mind. Based on this model, we present PAC-Bayesian generalization bounds for functions that are defined on the trajectory of the learned algorithm, for example, the expected (non-asymptotic) convergence rate and the expected time to reach the stopping criterion. … Read more

Convergence Analysis on A Data-deriven Inexact Proximal-indefinite Stochastic ADMM

In this paper, we propose an Inexact Proximal-indefinite Stochastic ADMM (abbreviated as IPS-ADMM) to solve a class of separable convex optimization problems whose objective functions consist of two parts: one is an average of many smooth convex functions and the other is a convex but potentially nonsmooth function. The involved smooth subproblem is tackled by … Read more

Nonexpansive Markov Operators and Random Function Iterations for Stochastic Fixed Point Problems

We study the convergence of random function iterations for finding an invariant measure of the corresponding Markov operator. We call the problem of finding such an invariant mea- sure the stochastic fixed point problem. This generalizes earlier work studying the stochastic feasibility problem, namely, to find points that are, with probability 1, fixed points of … Read more

Expected Value of Matrix Quadratic Forms with Wishart distributed Random Matrices

To explore the limits of a stochastic gradient method, it may be useful to consider an example consisting of an infinite number of quadratic functions. In this context, it is appropriate to determine the expected value and the covariance matrix of the stochastic noise, i.e. the difference of the true gradient and the approximated gradient … Read more

Finding Groups with Maximum Betweenness Centrality via Integer Programming with Random Path Sampling

One popular approach to access the importance/influence of a group of nodes in a network is based on the notion of centrality. For a given group, its group betweenness centrality is computed, first, by evaluating a ratio of shortest paths between each node pair in a network that are “covered” by at least one node … Read more

Optimized convergence of stochastic gradient descent by weighted averaging

Under mild assumptions stochastic gradient methods asymptotically achieve an optimal rate of convergence if the arithmetic mean of all iterates is returned as an approximate optimal solution. However, in the absence of stochastic noise, the arithmetic mean of all iterates converges considerably slower to the optimal solution than the iterates themselves. And also in the … Read more

On the first order optimization methods in Deep Image Prior

Deep learning methods have state-of-the-art performances in many image restoration tasks. Their effectiveness is mostly related to the size of the dataset used for the training. Deep Image Prior (DIP) is an energy function framework which eliminates the dependency on the training set, by considering the structure of a neural network as an handcrafted prior … Read more