A Combinatorial Cut-and-Lift Procedure with an Application to 0-1 Chance Constraints

Cut generation and lifting are key components for the performance of state-of-the-art mathematical programming solvers. This work proposes a new general cut-and-lift procedure that exploits the combinatorial structure of 0-1 problems via a binary decision diagram (BDD) encoding of their constraints. We present a general framework that can be applied to a large range of … Read more

A Polyhedral Approach to Bisubmodular Function Minimization

We consider minimization problems with bisubmodular objective functions. We propose a class of valid inequalities, which we call the poly-bimatroid inequalities and prove that these inequalities, along with trivial bound constraints, fully describe the convex hull of the epigraph of a bisubmodular function. We develop a cutting plane algorithm for general bisubmodular minimization problems using … Read more

Achieving Consistency with Cutting Planes

Cutting planes accelerate branch-and-bound search primarily by cutting off fractional solutions of the linear programming (LP) relaxation, resulting in tighter bounds for pruning the search tree. Yet cutting planes can also reduce backtracking by excluding inconsistent partial assignments that occur in the course of branching. A partial assignment is inconsistent with a constraint set when … Read more

Polynomial Size IP Formulations of Knapsack May Require Exponentially Large Coefficients

A desirable property of integer formulations is to consist of few inequalities having small coefficients. We show that these targets are conflicting by proving the existence of knapsack sets that need exponentially many inequalities or exponentially large coefficients in any integer formulation. Moreover, we show that there exist undirected graphs such that (in a natural … Read more

Persistency of Linear Programming Formulations for the Stable Set Problem

The Nemhauser-Trotter theorem states that the standard linear programming (LP) formulation for the stable set problem has a remarkable property, also known as (weak) persistency: for every optimal LP solution that assigns integer values to some variables, there exists an optimal integer solution in which these variables retain the same values. While the standard LP … Read more

Template-based Minor Embedding for Adiabatic Quantum Optimization

Quantum Annealing (QA) can be used to quickly obtain near-optimal solutions for Quadratic Unconstrained Binary Optimization (QUBO) problems. In QA hardware, each decision variable of a QUBO should be mapped to one or more adjacent qubits in such a way that pairs of variables defining a quadratic term in the objective function are mapped to … Read more

A smaller extended formulation for the odd cycle inequalities of the stable set polytope

For sparse graphs, the odd cycle polytope can be used to compute useful bounds for the maximum stable set problem quickly. Yannakakis introduced an extended formulation for the odd cycle inequalities of the stable set polytope in 1991, which provides a direct way to optimize over the odd cycle polytope in polynomial time, although there … Read more

The risk-averse ultimate pit problem

In this work, we consider a risk-averse ultimate pit problem where the grade of the mineral is uncertain. We propose a two-stage formulation of the problem and discuss which properties are desirable for a risk measure in this context. We show that the only risk measure that satisfies these properties is the entropic. We propose … Read more

Branch-and-Cut-and-Price for Multi-Agent Pathfinding

There are currently two broad strategies for optimal Multi-agent Pathfinding (MAPF): (1) search-based methods, which model and solve MAPF directly, and (2) compilation-based solvers, which reduce MAPF to instances of well-known combinatorial problems, and thus, can benefit from advances in solver techniques. In this work, we present an optimal algorithm, BCP, that hybridizes both approaches … Read more

Decomposition-based approaches for a class of two-stage robust binary optimization problems

In this paper, we study a class of two-stage robust binary optimization problems with objective uncertainty where recourse decisions are restricted to be mixed-binary. For these problems, we present a deterministic equivalent formulation through the convexification of the recourse feasible region. We then explore this formulation under the lens of a relaxation, showing that the … Read more