Polynomial Size IP Formulations of Knapsack May Require Exponentially Large Coefficients

A desirable property of integer formulations is to consist of few inequalities having small coefficients. We show that these targets are conflicting by proving the existence of knapsack sets that need exponentially many inequalities or exponentially large coefficients in any integer formulation. Moreover, we show that there exist undirected graphs such that (in a natural … Read more

Persistency of Linear Programming Formulations for the Stable Set Problem

The Nemhauser-Trotter theorem states that the standard linear programming (LP) formulation for the stable set problem has a remarkable property, also known as (weak) persistency: for every optimal LP solution that assigns integer values to some variables, there exists an optimal integer solution in which these variables retain the same values. While the standard LP … Read more

Template-based Minor Embedding for Adiabatic Quantum Optimization

Quantum Annealing (QA) can be used to quickly obtain near-optimal solutions for Quadratic Unconstrained Binary Optimization (QUBO) problems. In QA hardware, each decision variable of a QUBO should be mapped to one or more adjacent qubits in such a way that pairs of variables defining a quadratic term in the objective function are mapped to … Read more

A smaller extended formulation for the odd cycle inequalities of the stable set polytope

For sparse graphs, the odd cycle polytope can be used to compute useful bounds for the maximum stable set problem quickly. Yannakakis introduced an extended formulation for the odd cycle inequalities of the stable set polytope in 1991, which provides a direct way to optimize over the odd cycle polytope in polynomial time, although there … Read more

The risk-averse ultimate pit problem

In this work, we consider a risk-averse ultimate pit problem where the grade of the mineral is uncertain. We propose a two-stage formulation of the problem and discuss which properties are desirable for a risk measure in this context. We show that the only risk measure that satisfies these properties is the entropic. We propose … Read more

Branch-and-Cut-and-Price for Multi-Agent Pathfinding

There are currently two broad strategies for optimal Multi-agent Pathfinding (MAPF): (1) search-based methods, which model and solve MAPF directly, and (2) compilation-based solvers, which reduce MAPF to instances of well-known combinatorial problems, and thus, can benefit from advances in solver techniques. In this work, we present an optimal algorithm, BCP, that hybridizes both approaches … Read more

Decomposition-based approaches for a class of two-stage robust binary optimization problems

In this paper, we study a class of two-stage robust binary optimization problems with objective uncertainty where recourse decisions are restricted to be mixed-binary. For these problems, we present a deterministic equivalent formulation through the convexification of the recourse feasible region. We then explore this formulation under the lens of a relaxation, showing that the … Read more

Multi-Module Capacitated Lot-Sizing Problem, and its Generalizations with Two-Echelons and Piecewise Concave Production Costs

We study new generalizations of the classical capacitated lot-sizing problem with concave production (or transportation), holding, and subcontracting cost functions in which the total production (or transportation) capacity in each time period is the summation of capacities of a subset of n available modules (machines or vehicles) of different capacities. We refer to this problem … Read more

A Stochastic Bin Packing Approach for Server Consolidation with Conflicts

The energy consumption of large-scale data centers or server clusters is expected to grow significantly in the next couple of years contributing to up to 13 percent of the worlwide energy demand in 2030. As the involved processing units require a disproportional amount of energy when they are idle, underutilized or overloaded, balancing the supply … Read more

Anomalous Behaviour of Dual-Based Heuristics

Some popular heuristics for combinatorial optimisation start by constructing a feasible solution to a dual of the problem. We show that such dual-based heuristics can exhibit highly counter-intuitive behaviour. In particular, for some problem classes, solving the dual exactly invariably leads to much worse primal solutions than solving the dual with a simple greedy heuristic. … Read more