Clique-based facets for the precedence constrained knapsack problem

We consider a knapsack problem with precedence constraints imposed on pairs of items, known as the precedence constrained knapsack problem (PCKP). This problem has applications in manufacturing and mining, and also appears as a subproblem in decomposition techniques for network design and related problems. We present a new approach for determining facets of the PCKP … Read more

A heuristic to generate rank-1 GMI cuts

Gomory mixed-integer (GMI) cuts are among the most effective cutting planes for general mixed-integer programs (MIP). They are traditionally generated from an optimal basis of a linear programming (LP) relaxation of an MIP. In this paper we propose a heuristic to generate useful GMI cuts from additional bases of the initial LP relaxation. The cuts … Read more

Finite Disjunctive Programming Characterizations for General Mixed-Integer Linear Programs

In this paper, we give a finite disjunctive programming procedure to obtain the convex hull of general mixed-integer linear programs (MILP) with bounded integer variables. We propose a finitely convergent convex hull tree algorithm which constructs a linear program that has the same optimal solution as the associated MILP. In addition, we combine the standard … Read more

On the connection of the Sherali-Adams closure and border bases

The Sherali-Adams lift-and-project hierarchy is a fundamental construct in integer programming, which provides successively tighter linear programming relaxations of the integer hull of a polytope. We initiate a new approach to understanding the Sherali-Adams procedure by relating it to methods from computational algebraic geometry. Our main result is a refinement of the Sherali-Adams procedure that … Read more

Lifting Group Inequalities and an Application to Mixing Inequalities

Given a valid inequality for the mixed integer infinite group relaxation, a lifting based approach is presented that can be used to strengthen this inequality. Bounds on the solution of the corresponding lifting problem and some necessary conditions for the lifted inequality to be minimal for the mixed integer infinite group relaxation are presented. Finally, … Read more

Split Rank of Triangle and Quadrilateral Inequalities

A simple relaxation of two rows of a simplex tableau is a mixed integer set consisting of two equations with two free integer variables and non-negative continuous variables. Recently Andersen et al. (2007) and Cornuejols and Margot (2007) showed that the facet-defining inequalities of this set are either split cuts or intersection cuts obtained from … Read more

Constrained Infinite Group Relaxations of MIPs

Recently minimal and extreme inequalities for continuous group relaxations of general mixed integer sets have been characterized. In this paper, we consider a stronger relaxation of general mixed integer sets by allowing constraints, such as bounds, on the free integer variables in the continuous group relaxation. We generalize a number of results for the continuous … Read more

Strengthening lattice-free cuts using non-negativity

In recent years there has been growing interest in generating valid inequalities for mixed-integer programs using sets with 2 or more constraints. In particular, Andersen et.al (2007) and Borozan and Cornue’jols (2007) study sets defined by equations that contain exactly one integer variable per row. The integer variables are not restricted in sign. Cutting planes … Read more

Cutting Plane Methods and Subgradient Methods

Interior point methods have proven very successful at solving linear programming problems. When an explicit linear programming formulation is either not available or is too large to employ directly, a column generation approach can be used. Examples of column generation approaches include cutting plane methods for integer programming and decomposition methods for many classes of … Read more

Cutting Plane Algorithms for 0-1 Programming Based on Cardinality Cuts

Abstract: We present new valid inequalities for 0-1 programming problems that work in similar ways to well known cover inequalities. Discussion and analysis of these cuts is followed by their revision and use in integer programming as a new generation of cuts that excludes not only portions of polyhedra containing noninteger points, also parts with … Read more