Complexity of cutting planes and branch-and-bound in mixed-integer optimization

We investigate the theoretical complexity of branch-and-bound (BB) and cutting plane (CP) algorithms for mixed-integer optimization. In particular, we study the relative efficiency of BB and CP, when both are based on the same family of disjunctions. We extend a result of Dash to the nonlinear setting which shows that for convex 0/1 problems, CP … Read more

A Finitely Convergent Disjunctive Cutting Plane Algorithm for Bilinear Programming

In this paper we present and analyze a finitely-convergent disjunctive cutting plane algorithm to obtain an \(\epsilon\)-optimal solution or detect infeasibility of a general nonconvex continuous bilinear program. While the cutting planes are obtained in a manner similar to Saxena, Bonami, and Lee [Math. Prog. 130: 359–413, 2011] and Fampa and Lee [J. Global Optim. … Read more

Achieving Consistency with Cutting Planes

Cutting planes accelerate branch-and-bound search primarily by cutting off fractional solutions of the linear programming (LP) relaxation, resulting in tighter bounds for pruning the search tree. Yet cutting planes can also reduce backtracking by excluding inconsistent partial assignments that occur in the course of branching. A partial assignment is inconsistent with a constraint set when … Read more

Convex Hulls for Non-Convex Mixed-Integer Quadratic Programs with Bounded Variables

We consider non-convex mixed-integer quadratic programs in which all variables are explicitly bounded. Many exact methods for such problems use additional variables, representing products of pairs of original variables. We study the convex hull of feasible solutions in this extended space. Some other approaches use bit representation to convert bounded integer variables into binary variables. … Read more

Implementing Automatic Benders Decomposition in a Modern MIP Solver

We describe the automatic Benders decomposition implemented in the commercial solver IBM CPLEX. We propose several improvements to the state-of-the-art along two lines: making a numerically robust method able to deal with the general case and improving the efficiency of the method on models amenable to decomposition. For the former, we deal with: unboundedness, failures … Read more

Logic-based Benders Decomposition and Binary Decision Diagram Based Approaches for Stochastic Distributed Operating Room Scheduling

The distributed operating room (OR) scheduling problem aims to find an assignment of surgeries to ORs across collaborating hospitals that share their waiting lists and ORs. We propose a stochastic extension of this problem where surgery durations are considered to be uncertain. In order to obtain solutions for the challenging stochastic model, we use sample … Read more

Visible points, the separation problem, and applications to MINLP

In this paper we introduce a technique to produce tighter cutting planes for mixed-integer non-linear programs. Usually, a cutting plane is generated to cut off a specific infeasible point. The underlying idea is to use the infeasible point to restrict the feasible region in order to obtain a tighter domain. To ensure validity, we require … Read more

New facets and facet-generating procedures for the orientation model for vertex coloring problems

In this work, we study the \emph{orientation model} for vertex coloring problems with the aim of finding partial descriptions of the associated polytopes. We present new families of valid inequalities, most of them supported by paths of the input graph. We develop facet-generating procedures for the associated polytopes, which we denominate \emph{path-lifting procedures}. Given a … Read more

A Unified Approach to Mixed-Integer Optimization Problems With Logical Constraints

We propose a unified framework to address a family of classical mixed-integer optimization problems with logically constrained decision variables, including network design, facility location, unit commitment, sparse portfolio selection, binary quadratic optimization, sparse principal component analysis and sparse learning problems. These problems exhibit logical relationships between continuous and discrete variables, which are usually reformulated linearly … Read more