Gas Transport Network Optimization: Mixed-Integer Nonlinear Models

Although modern societies strive towards energy systems that are entirely based on renewable energy carriers, natural gas is still one of the most important energy sources. This became even more obvious in Europe with Russia’s 2022 war against the Ukraine and the resulting stop of gas supplies from Russia. Besides that it is very important … Read more

Solving Unsplittable Network Flow Problems with Decision Diagrams

In unsplittable network flow problems, certain nodes must satisfy a combinatorial requirement that the incoming arc flows cannot be split or merged when routed through outgoing arcs. This so-called “no-split no-merge” requirement arises in unit train scheduling where train consists should remain intact at stations that lack necessary equipment and manpower to attach/detach them. Solving … Read more

Improvements for Decomposition Based Methods Utilized in the Development of Multi-Scale Energy Systems

The optimal design of large-scale energy systems can be found by posing the problem as an integrated multi-period planning and scheduling mathematical programming problem. Due to the complexity of the accompanying mathematical programming problem decomposition techniques are often required but they to are plagued with converge issues. To address these issues we have derived a … Read more

A polyhedral study of multivariate decision trees

Decision trees are a widely used tool for interpretable machine learning. Multivariate decision trees employ hyperplanes at the branch nodes to route datapoints throughout the tree and yield more compact models than univariate trees. Recently, mixed-integer programming (MIP) has been applied to formulate the optimal decision tree problem. To strengthen MIP formulations, it is crucial … Read more

The Travelling Salesman Problem with positional consistency constraints: an application to healthcare services

In this paper we study the Consistent Traveling Salesman Problem with positional consistency constraints (CTSP), where we seek to generate a set of routes with minimum cost, in which all the clients that are visited in several routes require total positional consistency, that is, they need to appear in the same relative position in all … Read more

A Unified Framework for Symmetry Handling

Handling symmetries in optimization problems is essential for devising efficient solution methods. In this article, we present a general framework that captures many of the already existing symmetry handling methods. While these methods are mostly discussed independently from each other, our framework allows to apply different methods simultaneously and thus outperforming their individual effect. Moreover, … Read more

Improving reliability with optimal allocation of maintenance resources: an application to power distribution networks

Power distribution networks should strive for reliable delivery of energy. In this paper, we support this endeavor by addressing the Maintenance Resources Allocation Problem (MRAP). This problem consists of scheduling preventive maintenance plans on the equipment of distribution networks for a planning horizon, seeking the best trade-offs between system reliability and maintenance budgets. We propose … Read more

A Combinatorial Flow-based Formulation for Temporal Bin Packing Problems

We consider two neighboring generalizations of the classical bin packing problem: the temporal bin packing problem (TBPP) and the temporal bin packing problem with fire-ups (TBPP-FU). In both cases, the task is to arrange a set of given jobs, characterized by a resource consumption and an activity window, on homogeneous servers of limited capacity. To … Read more

Vehicle Routing with Heterogeneous Time Windows

We consider a novel variant of the heterogeneous vehicle routing problem (VRP) in which each customer has different availability time windows for every vehicle. In particular, this covers our motivating application of planning daily delivery tours for a single vehicle, where customers can be available at different times each day. The existing literature on heterogeneous … Read more

Evaluating Mixed-Integer Programming Models over Multiple Right-hand Sides

A critical measure of model quality for a mixed-integer program (MIP) is the difference, or gap, between its optimal objective value and that of its linear programming relaxation. In some cases, the right-hand side is not known exactly; however, there is no consensus metric for evaluating a MIP model when considering multiple right-hand sides. In … Read more