Minotaur: A Mixed-Integer Nonlinear Optimization Toolkit

We present a flexible framework for general mixed-integer nonlinear programming (MINLP), called Minotaur, that enables both algorithm exploration and structure exploitation without compromising computational efficiency. This paper documents the concepts and classes in our framework and shows that our implementations of standard MINLP techniques are efficient compared with other state-of-the-art solvers. We then describe structure-exploiting … Read more

Convexification of Queueing Formulas by Mixed-Integer Second-Order Cone Programming: An Application to a Discrete Location Problem with Congestion

Mixed-Integer Second-Order Cone Programs (MISOCPs) form a nice class of mixed-inter convex programs, which can be solved very efficiently due to the recent advances in optimization solvers. Our paper bridges the gap between modeling a class of optimization problems and using MISOCP solvers. It is shown how various performance metrics of M/G/1 queues can be … Read more

A multi-period production and distribution optimization model for radiopharmaceuticals

This paper addresses the manufacturing and distribution of short-lived radio-pharmaceuticals which are mainly used in diagnostic imaging studies. We develop a mixed integer nonlinear optimization model that is flexible enough to capture the complex underlying nuclear physics of the production process of fludeoxyglucose (FDG), which is widely used in oncology and cardiology, as well as … Read more

Bi-Perspective Functions for Mixed-Integer Fractional Programs with Indicator Variables

Perspective functions have long been used to convert fractional programs into convex programs. More recently, they have been used to form tight relaxations of mixed-integer nonlinear programs with so-called indicator variables. Motivated by a practical application (maximising energy efficiency in an OFDMA system), we consider problems that have a fractional objective and indicator variables simultaneously. … Read more

Improving the performance of DICOPT in convex MINLP problems using a feasibility pump

The solver DICOPT is based on an outer-approximation algorithm used for solving mixed- integer nonlinear programming (MINLP) problems. This algorithm is very effective for solving some types of convex MINLPs. However, there are certain problems that are dicult to solve with this algorithm. One of these problems is when the nonlinear constraints are so restrictive … Read more

Glider Routing and Trajectory Optimisation in Disaster Assessment

In this paper, we introduce the Glider Routing and Trajectory Optimisation Problem (GRTOP), the problem of finding simultaneously optimal routes and trajectories for a fleet of gliders with the aim of surveying a set of locations. We propose a novel Mixed-Integer Nonlinear Programming (MINLP) formulation for the GRTOP, which simultaneously optimises the routes as well … Read more

Facets of a mixed-integer bilinear covering set with bounds on variables

We derive a closed form description of the convex hull of mixed-integer bilinear covering set with bounds on the integer variables. This convex hull description is determined by considering some orthogonal disjunctive sets defined in a certain way. This description does not introduce any new variables, but consists of exponentially many inequalities. An extended formulation … Read more

A Decomposition Method for MINLPs with Lipschitz Continuous Nonlinearities

Many mixed-integer optimization problems are constrained by nonlinear functions that do not possess desirable analytical properties like convexity or factorability or cannot even be evaluated exactly. This is, e.g., the case for problems constrained by differential equations or for models that rely on black-box simulation runs. For these problem classes, we present, analyze, and test … Read more

A branch-and-bound algorithm for the minimum radius k-enclosing ball problem

The minimum $k$-enclosing ball problem seeks the ball with smallest radius that contains at least $k$ of $m$ given points in a general $n$-dimensional Euclidean space. This problem is NP-hard. We present a branch-and-bound algorithm on the tree of the subsets of $k$ points to solve this problem. The nodes on the tree are ordered … Read more

Satisfiability Modulo Theories for Process Systems Engineering

Process systems engineers have long recognized the importance of both logic and optimization for automated decision-making. But modern challenges in process systems engineering could strongly benefit from methodological contributions in computer science. In particular, we propose satisfiability modulo theories (SMT) for process systems engineering applications. We motivate SMT using a series of test beds and … Read more