Sampling Decisions in Optimum Experimental Design in the Light of Pontryagin’s Maximum Principle

Optimum Experimental Design (OED) problems are optimization problems in which an experimental setting and decisions on when to measure – the so-called sampling design – are to be determined such that a follow-up parameter estimation yields accurate results for model parameters. In this paper we use the interpretation of OED as optimal control problems with … Read more

The Symmetric Quadratic Traveling Salesman Problem

In the quadratic traveling salesman problem a cost is associated with any three nodes traversed in succession. This structure arises, e.g., if the succession of two edges represents energetic conformations, a change of direction or a possible change of transportation means. In the symmetric case, costs do not depend on the direction of traversal. We … Read more

Inexact solution of NLP subproblems in MINLP

In the context of convex mixed-integer nonlinear programming (MINLP), we investigate how the outer approximation method and the generalized Benders decomposition method are affected when the respective NLP subproblems are solved inexactly. We show that the cuts in the corresponding master problems can be changed to incorporate the inexact residuals, still rendering equivalence and finiteness … Read more

Inexact solution of NLP subproblems in MINLP

In the context of convex mixed-integer nonlinear programming (MINLP), we investigate how the outer approximation method and the generalized Benders decomposition method are affected when the respective NLP subproblems are solved inexactly. We show that the cuts in the corresponding master problems can be changed to incorporate the inexact residuals, still rendering equivalence and finiteness … Read more

Lifted Inequalities for 0−1 Mixed-Integer Bilinear Covering Sets

In this paper, we study 0-1 mixed-integer bilinear covering sets. We derive several families of facet-defining inequalities via sequence-independent lifting techniques. We then show that these sets have polyhedral structures that are similar to those of certain fixed-charge single-node flow sets. As a result, we obtain new facet-defining inequalities for these sets that generalize well-known … Read more

Bound reduction using pairs of linear inequalities

We describe a procedure to reduce variable bounds in Mixed Integer Nonlinear Programming (MINLP) as well as Mixed Integer Linear Programming (MILP) problems. The procedure works by combining pairs of inequalities of a linear programming (LP) relaxation of the problem. This bound reduction technique extends the implied bounds procedure used in MINLP and MILP and … Read more

A compact variant of the QCR method for quadratically constrained quadratic 0-1 programs

Quadratic Convex Reformulation (QCR) is a technique that was originally proposed for quadratic 0-1 programs, and then extended to various other problems. It is used to convert non-convex instances into convex ones, in such a way that the bound obtained by solving the continuous relaxation of the reformulated instance is as strong as possible. In … Read more

CONVEX HULL RELAXATION (CHR) FOR CONVEX AND NONCONVEX MINLP PROBLEMS WITH LINEAR CONSTRAINTS

The behavior of enumeration-based programs for solving MINLPs depends at least in part on the quality of the bounds on the optimal value and of the feasible solutions found. We consider MINLP problems with linear constraints. The convex hull relaxation (CHR) is a special case of the primal relaxation (Guignard 1994, 2007) that is very … Read more

A new, solvable, primal relaxation for convex nonlinear integer programming problems

The paper describes a new primal relaxation (PR) for computing bounds on nonlinear integer programming (NLIP) problems. It is a natural extension to NLIP problems of the geometric interpretation of Lagrangean relaxation presented by Geoffrion (1974) for linear problems, and it is based on the same assumption that some constraints are complicating and are treated … Read more

Combining QCR and CHR for Convex Quadratic MINLP Problems with Linear Constraints

The convex hull relaxation (CHR) method (Albornoz 1998, Ahlatçıoğlu 2007, Ahlatçıoğlu and Guignard 2010) provides lower bounds and feasible solutions (thus upper bounds) on convex 0-1 nonlinear programming problems with linear constraints. In the quadratic case, these bounds may often be improved by a preprocessing step that adds to the quadratic objective function terms which … Read more