Enhanced Pseudo-Polynomial Formulations for Bin Packing and Cutting Stock Problems

We study pseudo-polynomial formulations for the classical bin packing and cutting stock problems. We first propose an overview of dominance and equivalence relations among the main pattern-based and pseudo-polynomial formulations from the literature. We then introduce reflect, a new formulation that uses just half of the bin capacity to model an instance and needs significantly … Read more

A New Exact Algorithm to Optimize a Linear Function Over the Set of Efficient Solutions for Bi-objective Mixed Integer Linear Programs

We present the first (criterion space search) algorithm for optimizing a linear function over the set of efficient solutions of bi-objective mixed integer linear programs. The proposed algorithm is developed based on the Triangle Splitting Method (Boland et al. 2015b) which can find a full representation of the nondominated frontier of any bi-objective mixed integer … Read more

A multi-period production and distribution optimization model for radiopharmaceuticals

This paper addresses the manufacturing and distribution of short-lived radio-pharmaceuticals which are mainly used in diagnostic imaging studies. We develop a mixed integer nonlinear optimization model that is flexible enough to capture the complex underlying nuclear physics of the production process of fludeoxyglucose (FDG), which is widely used in oncology and cardiology, as well as … Read more

Compact Representation of Near-Optimal Integer Programming Solutions

It is often useful in practice to explore near-optimal solutions of an integer programming problem. We show how all solutions within a given tolerance of the optimal value can be efficiently and compactly represented in a weighted decision diagram, once the optimal value is known. The structure of a decision diagram facilitates rapid processing of … Read more

Lower bounds on the lattice-free rank for packing and covering integer programs

In this paper, we present lower bounds on the rank of the split closure, the multi-branch closure and the lattice-free closure for packing sets as a function of the integrality gap. We also provide a similar lower bound on the split rank of covering polyhedra. These results indicate that whenever the integrality gap is high, … Read more

A mixed-integer branching approach for very small formulations of disjunctive constraints

We study the existence and construction of very small formulations for disjunctive constraints in optimization problems: that is, formulations that use very few integer variables and extra constraints. To accomplish this, we present a novel mixed-integer branching formulation framework, which preserves many of the favorable algorithmic properties of a traditional mixed-integer programming formulation, including amenability … Read more

Bi-Perspective Functions for Mixed-Integer Fractional Programs with Indicator Variables

Perspective functions have long been used to convert fractional programs into convex programs. More recently, they have been used to form tight relaxations of mixed-integer nonlinear programs with so-called indicator variables. Motivated by a practical application (maximising energy efficiency in an OFDMA system), we consider problems that have a fractional objective and indicator variables simultaneously. … Read more

Constraints reduction programming by subset selection: a study from numerical aspect

We consider a novel method entitled constraints reduction programming which aims to reduce the constraints in an optimization model. This method is derived from various applications of management or decision making, and has potential ability to handle a wider range of applications. Due to the high combinatorial complexity of underlying model, it is difficult to … Read more

The Vertex k-cut Problem

Given an undirected graph G = (V, E), a vertex k-cut of G is a vertex subset of V the removing of which disconnects the graph in at least k connected components. Given a graph G and an integer k greater than or equal to two, the vertex k-cut problem consists in finding a vertex … Read more

Partially-Ranked Choice Models for Data-Driven Assortment Optimization

The assortment of products carried by a store has a crucial impact on its success. However, finding the right mix of products to attract a large portion of the customers is a challenging task. Several mathematical models have been proposed to optimize assortments. In particular, rank-based choice models have been acknowledged for representing well high-dimensional … Read more