New Constraints and Features for the University Course Timetabling Problem

The university course timetabling problem deals with the task of scheduling lectures of a set of university courses into a given number of rooms and time periods, taking into account various hard and soft constraints. The goal of the International Timetabling Competitions ITC2002 and ITC2007 was to establish models for comparison that cover the most … Read more

Unified approach for solving Box-Constrained models with continuous or discrete variables by Non monotonous Derivative Free Optimization techniques.

This paper describes a unified approach for solving Box-Constrained Optimization Problems (BCOP) in Euclidian spaces. The variables may be either continuous or discrete; in which case, they range on a grid of isolated points regularly spaced. For the continuous case, convergence is shown under standard assumptions; for the discrete case, slight modifications ensure that the … Read more

Distributed domain propagation

Portfolio parallelization is an approach that runs several solver instances in parallel and terminates when one of them succeeds in solving the problem. Despite it’s simplicity portfolio parallelization has been shown to perform well for modern mixed-integer programming (MIP) and boolean satisfiability problem (SAT) solvers. Domain propagation has also been shown to be a simple … Read more

Verifying Integer Programming Results

Software for mixed-integer linear programming can return incorrect results for a number of reasons, one being the use of inexact floating-point arithmetic. Even solvers that employ exact arithmetic may suffer from programming or algorithmic errors, motivating the desire for a way to produce independently verifiable certificates of claimed results. Due to the complex nature of … Read more

Tackling Industrial-Scale Supply Chain Problems by Mixed-Integer Programming

SAP’s decision support systems for optimized supply network planning rely on mixed-integer programming as the core engine to compute optimal or near-optimal solutions. The modeling flexibility and the optimality guarantees provided by mixed-integer programming greatly aid the design of a robust and future-proof decision support system for a large and diverse customer base. In this … Read more

Experiments with Conflict Analysis in Mixed Integer Programming

The analysis of infeasible subproblems plays an import role in solving mixed integer programs (MIPs) and is implemented in most major MIP solvers. There are two fundamentally different concepts to generate valid global constraints from infeasible subproblems. The first is to analyze the sequence of implications obtained by domain propagation that led to infeasibility. The … Read more

Characterizations of Mixed Binary Convex Quadratic Representable Sets

Representability results play a fundamental role in optimization since they provide characterizations of the feasible sets that arise from optimization problems. In this paper we study the sets that appear in the feasibility version of mixed binary convex quadratic optimization problems. We provide a complete characterization of the sets that can be obtained as the … Read more

On the notions of facets, weak facets, and extreme functions of the Gomory-Johnson infinite group problem

We investigate three competing notions that generalize the notion of a facet of finite-dimensional polyhedra to the infinite-dimensional Gomory–Johnson model. These notions were known to coincide for continuous piecewise linear functions with rational breakpoints. We show that two of the notions, extreme functions and facets, coincide for the case of continuous piecewise linear functions, removing … Read more

A parallelizable augmented Lagrangian method applied to large-scale non-convex-constrained optimization problems

We contribute improvements to a Lagrangian dual solution approach applied to large-scale optimization problems whose objective functions are convex, continuously differentiable and possibly nonlinear, while the non-relaxed constraint set is compact but not necessarily convex. Such problems arise, for example, in the split-variable deterministic reformulation of stochastic mixed-integer optimization problems. The dual solution approach needs … Read more

Special cases of the quadratic shortest path problem

The quadratic shortest path problem (QSPP) is the problem of finding a path in a digraph such that the sum of weights of arcs and the sum of interaction costs over all pairs of arcs on the path is minimized. We first consider a variant of the QSPP known as the adjacent QSPP. It was … Read more