Tightened L0 Relaxation Penalties for Classification

In optimization-based classification model selection, for example when using linear programming formulations, a standard approach is to penalize the L1 norm of some linear functional in order to select sparse models. Instead, we propose a novel integer linear program for sparse classifier selection, generalizing the minimum disagreement hyperplane problem whose complexity has been investigated in … Read more

An Improved Branch-and-Bound Method for Maximum Monomial Agreement

The NP-hard Maximum Monomial Agreement (MMA) problem consists of finding a single logical conjunction that best fits a weighted dataset of “positive” and “negative” binary vectors. Computing classifiers using boosting methods involves a maximum agreement subproblem at each iteration, although such subproblems are typically solved by heuristic methods. Here, we describe an exact branch and … Read more

A Time Bucket Formulation for the TSP with Time Windows

The Traveling Salesman Problem with Time Windows (TSPTW) is the problem of finding a minimum-cost path visiting a set of cities exactly once, where each city must be visited within a given time window. We present an extended formulation for the problem based on partitioning the time windows into sub-windows, which we call “buckets”. We … Read more

Mixed Integer NonLinear Programs featuring “On/Off ” constraints: convex analysis and applications

We call ”on/off” constraint an algebraic constraint that is activated if and only if a corresponding boolean variable is turned ”on” or equal to 1. Our main subject of interest is to derive tight convex formulations of Mixed Integer NonLinear Programs (MINLPs) featuring ”on/off” constraints. We study the simple set defined by one ”on/off” constraint … Read more

Exact Penalty Functions for Nonlinear Integer Programming Problems

In this work, we study exact continuous reformulations of nonlinear integer programming problems. To this aim, we preliminarily state conditions to guarantee the equivalence between pairs of general nonlinear problems. Then, we prove that optimal solutions of a nonlinear integer programming problem can be obtained by using various exact penalty formulations of the original problem … Read more

Clique-based facets for the precedence constrained knapsack problem

We consider a knapsack problem with precedence constraints imposed on pairs of items, known as the precedence constrained knapsack problem (PCKP). This problem has applications in manufacturing and mining, and also appears as a subproblem in decomposition techniques for network design and related problems. We present a new approach for determining facets of the PCKP … Read more

Algorithms and Software for Convex Mixed Integer Nonlinear Programs

This paper provides a survey of recent progress and software for solving mixed integer nonlinear programs (MINLP) wherein the objective and constraints are defined by convex functions and integrality restrictions are imposed on a subset of the decision variables. Convex MINLPs have received sustained attention in very years. By exploiting analogies to the case of … Read more

Quadratic factorization heuristics for copositive programming

Copositive optimization problems are particular conic programs: extremize linear forms over the copositive cone subject to linear constraints. Every quadratic program with linear constraints can be formulated as a copositive program, even if some of the variables are binary. So this is an NP-hard problem class. While most methods try to approximate the copositive cone … Read more

A heuristic to generate rank-1 GMI cuts

Gomory mixed-integer (GMI) cuts are among the most effective cutting planes for general mixed-integer programs (MIP). They are traditionally generated from an optimal basis of a linear programming (LP) relaxation of an MIP. In this paper we propose a heuristic to generate useful GMI cuts from additional bases of the initial LP relaxation. The cuts … Read more

Two-Stage Quadratic Integer Programs with Stochastic Right-Hand Sides

We consider two-stage quadratic integer programs with stochastic right-hand sides, and present an equivalent reformulation using value functions. We fi rst derive some basic properties of value functions of quadratic integer programs. We then propose a two-phase solution approach. The first phase constructs the value functions of quadratic integer programs in both stages. The second phase … Read more