Nonlinear Integer Programming

Research efforts of the past fifty years have led to a development of linear integer programming as a mature discipline of mathematical optimization. Such a level of maturity has not been reached when one considers nonlinear systems subject to integrality requirements for the variables. This chapter is dedicated to this topic.  The primary goal is … Read more

A Branch-and-Cut-and-Price Algorithm for Vertex-Biconnectivity Augmentation

In this paper, the first approach for solving the vertex-biconnectivity augmentation problem (V2AUG) to optimality is proposed. Given a spanning subgraph of an edge-weighted graph, we search for the cheapest subset of edges to augment this subgraph in order to make it vertex-biconnected. The problem is reduced to the augmentation of the corresponding block-cut tree, … Read more

An algorithmic framework for MINLP with separable non-convexity

Global optimization algorithms, e.g., spatial branch-and-bound approaches like those implemented in codes such as BARON and COUENNE, have had substantial success in tackling complicated, but generally small scale, non-convex MINLPs (i.e., mixed-integer nonlinear programs having non-convex continuous relaxations). Because they are aimed at a rather general class of problems, the possibility remains that larger instances … Read more

Lifting Group Inequalities and an Application to Mixing Inequalities

Given a valid inequality for the mixed integer infinite group relaxation, a lifting based approach is presented that can be used to strengthen this inequality. Bounds on the solution of the corresponding lifting problem and some necessary conditions for the lifted inequality to be minimal for the mixed integer infinite group relaxation are presented. Finally, … Read more

On Solving Single-objective Fuzzy Integer Linear Fractional Programs

A suggested program with fuzzy linear fractional objective and integer decision variables (FILFP) is considered. The fuzzy coefficients are involved in the numerator of the linear objective function and can be characterized by trapezoidal fuzzy numbers. The purpose of this paper is to outline an algorithm available to solve (FILFP). In addition, an illustrative example … Read more

Split Rank of Triangle and Quadrilateral Inequalities

A simple relaxation of two rows of a simplex tableau is a mixed integer set consisting of two equations with two free integer variables and non-negative continuous variables. Recently Andersen et al. (2007) and Cornuejols and Margot (2007) showed that the facet-defining inequalities of this set are either split cuts or intersection cuts obtained from … Read more

Valid inequalities and Branch-and-Cut for the Clique Pricing Problem

Motivated by an application in highway pricing, we consider the problem that consists in setting profit-maximizing tolls on a clique subset of a multicommodity transportation network. Following a proof that clique pricing is NP-hard, we propose strong valid inequalities, some of which define facets of the 2-commodity polyhedron. The numerical efficiency of these inequalities is … Read more

Strengthening lattice-free cuts using non-negativity

In recent years there has been growing interest in generating valid inequalities for mixed-integer programs using sets with 2 or more constraints. In particular, Andersen et.al (2007) and Borozan and Cornue’jols (2007) study sets defined by equations that contain exactly one integer variable per row. The integer variables are not restricted in sign. Cutting planes … Read more

Constrained Infinite Group Relaxations of MIPs

Recently minimal and extreme inequalities for continuous group relaxations of general mixed integer sets have been characterized. In this paper, we consider a stronger relaxation of general mixed integer sets by allowing constraints, such as bounds, on the free integer variables in the continuous group relaxation. We generalize a number of results for the continuous … Read more

Cutting Plane Methods and Subgradient Methods

Interior point methods have proven very successful at solving linear programming problems. When an explicit linear programming formulation is either not available or is too large to employ directly, a column generation approach can be used. Examples of column generation approaches include cutting plane methods for integer programming and decomposition methods for many classes of … Read more