A Branch-and-Price Algorithm for Combined Location and Routing Problems Under Capacity Restrictions

We investigate the problem of simultaneously determining the location of facilities and the design of vehicle routes to serve customer demands under vehicle and facility capacity restrictions. We present a set-partitioning-based formulation of the problem and study the relationship between his formulation and the graph-based formulations that have been used in previous studies of this … Read more

Experiments with Branching using General Disjunctions

Branching is an important component of the branch-and-cut algorithm for solving mixed integer linear programs. Most solvers branch by imposing a disjunction of the form“$x_i \leq k \vee x_i \geq k+1$” for some integer $k$ and some integer-constrained variable $x_i$. A generalization of this branching scheme is to branch by imposing a more general disjunction … Read more

Two Row Mixed Integer Cuts Via Lifting

Recently, Andersen et al.(2007), Borozan and Cornuejols (2007) and Cornuejols and Margot(2007) characterized extreme inequalities of a system of two rows with two free integer variables and nonnegative continuous variables. These inequalities are either split cuts or intersection cuts (Balas (1971)) derived using maximal lattice-free convex sets. In order to use these inequalities to obtain … Read more

Perspective Reformulations of Mixed Integer Nonlinear Programs with Indicator Variables

We study mixed integer nonlinear programs (MINLP)s that are driven by a collection of indicator variables where each indicator variable controls a subset of the decision variables. An indicator variable, when it is “turned off”, forces some of the decision variables to assume fixed values, and, when it is “turned on”, forces them to belong … Read more

Separation of Mixing Inequalities in a Mixed Integer Programming Solver

This paper shows how valid inequalities based on the mixing set can be used in a mixed integer programming (MIP) solver. It discusses the relation of mixing inequalities to flow path and mixed integer rounding in- equalities and how currently used separation algorithms already generate cuts implicitly that can be seen as mixing cuts. Further … Read more

Computational testing of exact mixed knapsack separation for MIP problems

In this paper we study an exact separation algorithm for mixed knapsack sets with the aim of evaluating its effectiveness in a cutting plane algorithm for Mixed-Integer Programming. First proposed by Boyd in the 90’s, exact knapsack separation has recently found a renewed interest. In this paper we present a “lightweight” exact separation procedure for … Read more

A Branch-and-cut Algorithm for Integer Bilevel Linear Programs

We describe a rudimentary branch-and-cut algorithm for solving integer bilevel linear programs that extends existing techniques for standard integer linear programs to this very challenging computational setting. The algorithm improves on the branch-and-bound algorithm of Moore and Bard in that it uses cutting plane techniques to produce improved bounds, does not require specialized branching strategies, … Read more

An Improved Algorithm for the Generalized Quadratic Assignment Problem

In the Generalized Quadratic Assignment Problem (GQAP), given M facilities and N locations, one must assign each facility to one location so as to satisfy the given facility space requirements, minimizing the sum of installation and facility interaction costs. In this paper, we propose a new Lagrangean relaxation and a lower bounding procedure for the … Read more

Algorithms for stochastic lot-sizing problems with backlogging

As a traditional model in the operations research and management science domain, lot-sizing problem is embedded in many application problems such as production and inventory planning and has been consistently drawing attentions from researchers. There is significant research progress on polynomial time algorithm developments for deterministic uncapacitated lot-sizing problems based on Wagner-and-Whitin property. However, in … Read more

New Turnpike Theorems for the Unbounded Knapsack Problem

We develop sharp bounds on turnpike theorems for the unbounded knapsack problem. Turnpike theorems specify when it is optimal to load at least one unit of the best item (i.e., the one with the highest “bang-for-buck” ratio) and, thus can be used for problem preprocessing. The successive application of the turnpike theorems can drastically reduce … Read more