On Sparse Canonical Correlation Analysis

The classical Canonical Correlation Analysis (CCA) identifies the correlations between two sets of multivariate variables based on their covariance, which has been widely applied in diverse fields such as computer vision, natural language processing, and speech analysis. Despite its popularity, CCA can encounter challenges in explaining correlations between two variable sets within high-dimensional data contexts. … Read more

A widespread belief about county splits in political districting plans is wrong

Consider the task of dividing a state into k contiguous political districts whose populations must not differ by more than one person, following current practice for congressional districting in the USA. A widely held belief among districting experts is that this task requires at least k-1 county splits. This statement has appeared in expert testimony, … Read more

A Family of Spanning-Tree Formulations for the Maximum Cut Problem

We present a family of integer programming formulations for the maximum cut problem. These formulations encode the incidence vectors of the cuts of a connected graph by employing a subset of the odd-cycle inequalities that relate to a spanning tree, and they require only the corresponding edge variables to be integral explicitly. They so describe … Read more

QUBO Dual Bounds via SDP Plane Projection Method

In this paper, we present a new method to solve a certain type of Semidefinite Programming (SDP) problems. These types of SDPs naturally arise in the Quadratic Convex Reformulation (QCR) method and can be used to obtain dual bounds of Quadratic Unconstrained Binary Optimization (QUBO) problems. QUBO problems have recently become the focus of attention … Read more

Approximating the Pareto frontier for bi-objective preventive maintenance and workshop scheduling. A Lagrangean lower bounding methodology for evaluating contracting forms

Effective planning of preventive maintenance plays an important role in maximizing the operational readiness of any industrial system. We consider an operating system and a maintenance workshop governed by two stakeholders who collaborate based on a mutual contract: components of the operating system that need maintenance are sent to the maintenance workshop, where necessary maintenance … Read more

Adaptive Partitioning for Chance-Constrained Problems with Finite Support

This paper studies chance-constrained stochastic optimization problems with finite support. It presents an iterative method that solves reduced-size chance-constrained models obtained by partitioning the scenario set. Each reduced problem is constructed to yield a bound on the optimal value of the original problem. We show how to adapt the partitioning of the scenario set so … Read more

An Exceptionally Difficult Binary Quadratic Optimization Problem with Symmetry: a Challenge for The Largest Unsolved QAP Instance Tai256c

Tai256c is the largest unsolved quadratic assignment problem (QAP) instance in QAPLIB. It is known that QAP tai256c can be converted into a 256 dimensional binary quadratic optimization problem (BQOP) with a single cardinality constraint which requires the sum of the binary variables to be 92. As the BQOP is much simpler than the original … Read more

Submodular Dispatching with Multiple Vehicles

Motivated by applications in e-commerce logistics and production planning where orders (or items, or jobs) arrive at different times and must be dispatched or processed in batches, we consider a multi-vehicle dispatching problem that captures the tension between waiting for orders to arrive and the economies of scale due to batching. Our model extends the … Read more

discrete location models with customers’ choice and path improvements

We examine several facility location problems within a directed network involving two distinct cost types. The first, referred to as the customer cost, represents the expense each customer considers when selecting a facility to obtain service (e.g., delivery time or a measure of quality degradation). Consequently, once facilities are established, each customer chooses the one … Read more

An outer approximation method for solving mixed-integer convex quadratic programs with indicators

Mixed-integer convex quadratic programs with indicator variables (MIQP) encompass a wide range of applications, from statistical learning to energy, finance, and logistics. The outer approximation (OA) algorithm has been proven efficient in solving MIQP, and the key to the success of an OA algorithm is the strength of the cutting planes employed. In this paper, … Read more