Strong valid inequalities for a class of concave submodular minimization problems under cardinality constraints

We study the polyhedral convex hull structure of a mixed-integer set which arises in a class of cardinality-constrained concave submodular minimization problems. This class of problems has an objective function in the form of $f(a^\top x)$, where $f$ is a univariate concave function, $a$ is a non-negative vector, and $x$ is a binary vector of … Read more

Sequential Competitive Facility Location: Exact and Approximate Algorithms

We study a competitive facility location problem (CFLP), where two firms sequentially open new facilities within their budgets, in order to maximize their market shares of demand that follows a probabilistic choice model. This process is a Stackelberg game and admits a bilevel mixed-integer nonlinear program (MINLP) formulation. We derive an equivalent, single-level MINLP reformulation … Read more

Presolving Linear Bilevel Optimization Problems

Linear bilevel optimization problems are known to be strongly NP-hard and the computational techniques to solve these problems are often motivated by techniques from single-level mixed-integer optimization. Thus, during the last years and decades many branch-and-bound methods, cutting planes, or heuristics have been proposed. On the other hand, there is almost no literature on presolving … Read more

Shapes and recession cones in mixed-integer convex representability

Mixed-integer convex representable (MICP-R) sets are those sets that can be represented exactly through a mixed-integer convex programming formulation. Following up on recent work by Lubin et al. (2017, 2020) we investigate structural geometric properties of MICP-R sets, which strongly differentiate them from the class of mixed-integer linear representable sets (MILP-R). First, we provide an … Read more

Switching cost aware rounding for relaxations of mixed-integer optimal control problems: the two-dimensional case

This article is concerned with a recently proposed switching cost aware rounding (SCARP) strategy in the combinatorial integral decomposition for mixed-integer optimal control problems (MIOCPs). We consider the case of a control variable that is discrete-valued and distributed on a two-dimensional domain. While the theoretical results from the one-dimensional case directly apply to the multidimensional … Read more

An Approximation Algorithm for Indefinite Mixed Integer Quadratic Programming

In this paper we give an algorithm that finds an epsilon-approximate solution to a mixed integer quadratic programming (MIQP) problem. The algorithm runs in polynomial time if the rank of the quadratic function and the number of integer variables are fixed. The running time of the algorithm is expected unless P=NP. In order to design … Read more

Decomposition Methods for Global Solutions of Mixed-Integer Linear Programs

This paper introduces two decomposition-based methods for two-block mixed-integer linear programs (MILPs), which aim to take advantage of separable structures of the original problem by solving a sequence of lower-dimensional MILPs. The first method is based on the $\ell_1$-augmented Lagrangian method (ALM), and the second one is based on a modified alternating direction method of … Read more

Cutting Plane Generation Through Sparse Principal Component Analysis

Quadratically-constrained quadratic programs (QCQPs) are optimization models whose remarkable expressiveness has made them a cornerstone of methodological research for nonconvex optimization problems. However, modern methods to solve a general QCQP fail to scale, encountering computational challenges even with just a few hundred variables. Specifically, a semidefinite programming (SDP) relaxation is typically employed, which provides strong … Read more

Scaling Up Exact Neural Network Compression by ReLU Stability

We can compress a neural network while exactly preserving its underlying functionality with respect to a given input domain if some of its neurons are stable. However, current approaches to determine the stability of neurons in networks with Rectified Linear Unit (ReLU) activations require solving or finding a good approximation to multiple discrete optimization problems. … Read more

Learning Symbolic Expressions: Mixed-Integer Formulations, Cuts, and Heuristics

In this paper we consider the problem of learning a regression function without assuming its functional form. This problem is referred to as symbolic regression. An expression tree is typically used to represent a solution function, which is determined by assigning operators and operands to the nodes. The symbolic regression problem can be formulated as … Read more