## Unifying Condition Numbers for Linear Programming

In recent years, several condition numbers were defined for a variety of linear programming problems based upon relative distances to ill-posedness. In this paper we provide a unifying view of these condition numbers. To do so, we introduce yet another linear programming problem and show that its distance to ill-posedness naturally captures the most commonly … Read more

## The Inverse Optimal Value Problem

This paper considers the following inverse optimization problem: given a linear program, a desired optimal objective value, and a set of feasible cost coefficients, determine a cost-coefficient vector such that the corresponding optimal objective value of the linear program is closest to the given value. The above problem, referred here as the inverse optimal value … Read more

## Safe bounds in linear and mixed-integer programming

Current mixed-integer linear programming solvers are based on linear programming routines that use floating point arithmetic. Occasionally, this leads to wrong solutions, even for problems where all coefficients and all solution components are small integers. It is shown how, using directed rounding and interval arithmetic, cheap pre- and postprocessing of the linear programs arising in … Read more

## The method of reflection-projection for convex feasibility problems with an obtuse cone

The convex feasibility problem asks to find a point in the intersection of finitely many closed convex sets in Euclidean space. This problem is of fundamental importance in mathematics and physical sciences, and it can be solved algorithmically by the classical method of cyclic projections. In this paper, the case where one of the constraints … Read more

## Large-Scale Linear Programming Techniques for the Design of Protein Folding Potentials

We present large-scale optimization techniques to model the energy function that underlies the folding process of proteins. Linear Programming is used to identify parameters in the energy function model, the objective being that the model predict the structure of known proteins correctly. Such trained functions can then be used either for {\em ab-initio} prediction or … Read more

## Computational Experience and the Explanatory Value of Condition Numbers for Linear Optimization

The goal of this paper is to develop some computational experience and test the practical relevance of the theory of condition numbers C(d) for linear optimization, as applied to problem instances that one might encounter in practice. We used the NETLIB suite of linear optimization problems as a test bed for condition number computation and … Read more

## Block-iterative algorithms with diagonally scaled oblique projections for the linear feasibility problem

We formulate a block-iterative algorithmic scheme for the solution of systems of linear inequalities and/or equations and analyze its convergence. This study provides as special cases proofs of convergence of (i) the recently proposed Component Averaging (CAV) method of Censor, Gordon and Gordon ({\it Parallel Computing}, 27:777–808, 2001), (ii) the recently proposed Block-Iterative CAV (BICAV) … Read more

## A Dynamic Large-Update Primal-Dual Interior-Point Method for Linear Optimization

Primal-dual interior-point methods (IPMs) have shown their power in solving large classes of optimization problems. However, at present there is still a gap between the practical behavior of these algorithms and their theoretical worst-case complexity results, with respect to the strategies of updating the duality gap parameter in the algorithm. The so-called small-update IPMs enjoy … Read more

## Semidefinite programming vs LP relaxations for polynomial programming

We consider the global minimization of a multivariate polynomial on a semi-algebraic set \Omega defined with polynomial inequalities. We then compare two hierarchies of relaxations, namely, LP-relaxations based on products of the original constraints, in the spirit of the RLT procedure of Sherali and Adams and recent SDP (semi definite programming) relaxations introduced by the … Read more

## Continuous trajectories for primal-dual potential-reduction methods

This article considers continuous trajectories of the vector fields induced by two different primal-dual potential-reduction algorithms for solving linear programming problems. For both algorithms, it is shown that the associated continuous trajectories include the central path and the duality gap converges to zero along all these trajectories. For the algorithm of Kojima, Mizuno, and Yoshise, … Read more