On duality gap in linear conic problems

In their paper “Duality of linear conic problems” A. Shapiro and A. Nemirovski considered two possible properties (A) and (B) for dual linear conic problems (P) and (D). The property (A) is “If either (P) or (D) is feasible, then there is no duality gap between (P) and (D)”, while property (B) is “If both … Read more

Semidefinite Relaxations for Non-Convex Quadratic Mixed-Integer Programming

We present semidefinite relaxations for unconstrained non-convex quadratic mixed-integer optimization problems. These relaxations yield tight bounds and are computationally easy to solve for medium-sized instances, even if some of the variables are integer and unbounded. In this case, the problem contains an infinite number of linear constraints; these constraints are separated dynamically. We use this … Read more

Parallel solver for semidefinite programming problem having sparse Schur complement matrix

SemiDefinite Programming (SDP) problem is one of the most central problems in mathematical programming. SDP provides a practical computation framework for many research fields. Some applications, however, require solving large-scale SDPs whose size exceeds the capacity of a single processor in terms of computational time and available memory. SDPARA (SemiDefinite Programming Algorithm paRAllel version) developed … Read more

Interior Point Methods for Computing Optimal Designs

In this paper we study interior point (IP) methods for solving optimal design problems. In particular, we propose a primal IP method for solving the problems with general convex optimality criteria and establish its global convergence. In addition, we reformulate the problems with A-, D- and E-criterion into linear or log-determinant semidefinite programs (SDPs) and … Read more

Computational and Economic Limitations of Dispatch Operations in the Next-Generation Power Grid

We study the interactions between computational and economic performance of dispatch operations under highly dynamic environments. In particular, we discuss the need for extending the forecast horizon of the dispatch formulation in order to anticipate steep variations of renewable power and highly elastic loads. We present computational strategies to solve the increasingly larger optimization problems … Read more

On Doubly Positive Semidefinite Programming Relaxations

Recently, researchers have been interested in studying the semidefinite programming (SDP) relaxation model, where the matrix is both positive semidefinite and entry-wise nonnegative, for quadratically constrained quadratic programming (QCQP). Comparing to the basic SDP relaxation, this doubly-positive SDP model possesses additional O(n2) constraints, which makes the SDP solution complexity substantially higher than that for the … Read more

The Approach of Moments for Polynomial Equations

In this article we present the moment based approach for computing all real solutions of a given system of polynomial equations. This approach builds upon a lifting method for constructing semidefinite relaxations of several nonconvex optimization problems, using sums of squares of polynomials and the dual theory of moments. A crucial ingredient is a semidefinite … Read more

Elementary optimality conditions for nonlinear SDPs

The goal of this paper is an easy and self-contained presentation of optimality conditions for nonlinear semidefinite programs concentrating on the differences between nonlinear semidefinite programs and nonlinear programs. CitationTechnical Report, Department of Mathematics, Universit\”at D\”usseldorf.ArticleDownload View PDF

On convex relaxations for quadratically constrained quadratic programming

We consider convex relaxations for the problem of minimizing a (possibly nonconvex) quadratic objective subject to linear and (possibly nonconvex) quadratic constraints. Let F denote the feasible region for the linear constraints. We first show that replacing the quadratic objective and constraint functions with their convex lower envelopes on F is dominated by an alternative … Read more

The state-of-the-art in conic optimization software

This work gives an overview over the major codes available for the solution of linear semidefinite (SDP) and second-order cone (SOCP) programs. Some developments since the 7th DIMACS Challenge [9, 17] are pointed out as well as some currently under way. Instead of presenting per- formance tables, reference is made to the ongoing benchmark [19] … Read more