A Newton-CG Augmented Lagrangian Method for Semidefinite Programming

We consider a Newton-CG augmented Lagrangian method for solving semidefinite programming (SDP) problems from the perspective of approximate semismooth Newton methods. In order to analyze the rate of convergence of our proposed method, we characterize the Lipschitz continuity of the corresponding solution mapping at the origin. For the inner problems, we show that the positive … Read more

Tractable Robust Expected Utility and Risk Models for Portfolio Optimization

Expected utility models in portfolio optimization is based on the assumption of complete knowledge of the distribution of random returns. In this paper, we relax this assumption to the knowledge of only the mean, covariance and support information. No additional assumption on the type of distribution such as normality is made. The investor’s utility is … Read more

Parallel implementation of a semidefinite programming solver based on CSDP on a distributed memory cluster

In this paper we present the algorithmic framework and practical aspects of implementing a parallel version of a primal-dual semidefinite programming solver on a distributed memory computer cluster. Our implementation is based on the CSDP solver and uses a message passing interface (MPI), and the ScaLAPACK library. A new feature is implemented to deal with … Read more

Homogeneous algorithms for monotone complementarity problems over symmetric cones

In \cite{aYOSHISE06}, the author proposed a homogeneous model for standard monotone nonlinear complementarity problems over symmetric cones and show that the following properties hold: (a) There is a path that is bounded and has a trivial starting point without any regularity assumption concerning the existence of feasible or strictly feasible solutions. (b) Any accumulation point … Read more

Convergence Analysis of a Weighted Barrier Decomposition Algorithm for Two Stage Stochastic Programming

Mehrotra and Ozevin computationally found that a weighted primal barrier decomposition algorithm significantly outperforms the barrier decomposition proposed and analyzed in Zhao, and Mehrotra and Ozevin. This paper provides a theoretical foundation for the weighted barrier decomposition algorithm (WBDA). Although the worst case analysis of the WBDA achieves a first-stage iteration complexity bound that is … Read more

A p-Cone Sequential Relaxation Procedure for 0-1 Integer Programs

Given a 0-1 integer programming problem, several authors have introduced sequential relaxation techniques — based on linear and/or semidefinite programming — that generate the convex hull of integer points in at most $n$ steps. In this paper, we introduce a sequential relaxation technique, which is based on $p$-order cone programming ($1 \le p \le \infty$). … Read more

Computing Globally Optimal Solutions for Single-Row Layout Problems Using Semidefinite Programming and Cutting Planes

This paper is concerned with the single-row facility layout problem (SRFLP). A globally optimal solution to the SRFLP is a linear placement of rectangular facilities with varying lengths that achieves the minimum total cost associated with the (known or projected) inter- actions between them. We demonstrate that the combination of a semidefinite programming relaxation with … Read more

Exploiting Sparsity in SDP Relaxation for Sensor Network Localization

A sensor network localization problem can be formulated as a quadratic optimization problem (QOP). For quadratic optimization problems, semidefinite programming (SDP) relaxation by Lasserre with relaxation order 1 for general polynomial optimization problems (POPs) is known to be equivalent to the sparse SDP relaxation by Waki {¥it et al.} with relaxation order 1, except the … Read more

Lower Bounds for Measurable Chromatic Numbers

The Lov\’asz theta function provides a lower bound for the chromatic number of finite graphs based on the solution of a semidefinite program. In this paper we generalize it so that it gives a lower bound for the measurable chromatic number of distance graphs on compact metric spaces. In particular we consider distance graphs on … Read more

An Adaptive Linear Approximation Algorithm for Copositive Programs

We study linear optimization problems over the cone of copositive matrices. These problems appear in nonconvex quadratic and binary optimization, for instance the maximum clique problem and other combinatorial problems can be reformulated as such a problem. We present new polyhedral inner and outer approximations of the copositive cone which we show to be exact … Read more