A conic duality Frank–Wolfe type theorem via exact penalization in quadratic optimization

The famous Frank–Wolfe theorem ensures attainability of the optimal value for quadratic objective functions over a (possibly unbounded) polyhedron if the feasible values are bounded. This theorem does not hold in general for conic programs where linear constraints are replaced by more general convex constraints like positive-semidefiniteness or copositivity conditions, despite the fact that the … Read more

Self-Concordant Barriers for Convex Approximations of Structured Convex Sets

We show how to approximate the feasible region of structured convex optimization problems by a family of convex sets with explicitly given and efficient (if the accuracy of the approximation is moderate) self-concordant barriers. This approach extends the reach of the modern theory of interior-point methods, and lays the foundation for new ways to treat … Read more

The operator $\Psi$ for the Chromatic Number of a Graph

We investigate hierarchies of semidefinite approximations for the chromatic number $\chi(G)$ of a graph $G$. We introduce an operator $\Psi$ mapping any graph parameter $\beta(G)$, nested between the stability number $\alpha(G)$ and $\chi\left( {\ol G} \right)$, to a new graph parameter $\Psi_\beta(G)$, nested between $\alpha (\ol G)$ and $\chi(G)$; $\Psi_\beta(G)$ is polynomial time computable if … Read more

Computing semidefinite programming lower bounds for the (fractional) chromatic number via block-diagonalization

Recently we investigated in “The operator $\Psi$ for the Chromatic Number of a Graph” hierarchies of semidefinite approximations for the chromatic number $\chi(G)$ of a graph $G$. In particular, we introduced two hierarchies of lower bounds, the `$\psi$’-hierarchy converging to the fractional chromatic number, and the `$\Psi$’-hierarchy converging to the chromatic number of a graph. … Read more

Sufficient Conditions for a Real Polynomial to be a Sum of Squares

We provide explicit sufficient conditions for a polynomial $f$ to be a sum of squares (s.o.s.), linear in the coefficients of $f$. All conditions are simple and provide an explicit description of a convex polyhedral subcone of the cone of s.o.s. polynomials of degree at most $2d$. We also provide a simple condition to ensure … Read more

Mehrotra-type predictor-corrector algorithms revisited

Motivated by a numerical example which shows that a feasible version of Mehrotra’s original predictor-corrector algorithm might be inefficient in practice, Salahi et al., proposed a so-called safeguard based variant of the algorithm that enjoys polynomial iteration complexity while its practical efficiency is preserved. In this paper we analyze the same Mehrotra’s algorithm from a … Read more

Constraint Nondegeneracy, Strong Regularity and Nonsingularity in Semidefinite Programming

It is known that the Karush-Kuhn-Tucker (KKT) conditions of semidefinite programming can be reformulated as a nonsmooth system via the metric projector over the cone of symmetric and positive semidefinite matrices. We show in this paper that the primal and dual constraint nondegeneracies, the strong regularity, the nonsingularity of the B-subdifferential of this nonsmooth system, … Read more

On the Closedness of the Linear Image of a Closed Convex Cone

When is the linear image of a closed convex cone closed? We present very simple, and intuitive necessary conditions, which 1) unify, and generalize seemingly disparate, classical sufficient conditions: polyhedrality of the cone, and “Slater” type conditions; 2) are necessary and sufficient, when the dual cone belongs to a class, that we call nice cones. … Read more

Finding a point in the relative interior of a polyhedron

A new initialization or `Phase I’ strategy for feasible interior point methods for linear programming is proposed that computes a point on the primal-dual central path associated with the linear program. Provided there exist primal-dual strictly feasible points — an all-pervasive assumption in interior point method theory that implies the existence of the central path … Read more

Cascading – An adjusted exchange method for robust conic programming

It is well known that the robust counterpart introduced by Ben-Tal and Nemirovski [2] increases the numerical complexity of the solution compared to the original problem. Kocvara, Nemirovski and Zowe therefore introduced in [9] an approximation algorithm for the special case of robust material optimization, called cascading. As the title already indicates, we will show … Read more