The Q Method for Symmetric Cone Programming

We extend the Q method to the symmetric cone programming. An infeasible interior point algorithm and a Newton-type algorithm are given. We give convergence results of the interior point algorithm and prove that the Newton-type algorithm is good for Citation AdvOl-Report#2004/18 McMaster University, Advanced Optimization Laboratory Hamilton, Ontario, Canada October 2004 Article Download View The … Read more

The Q Method for Second-order Cone Programming

Based on the Q method for SDP, we develop the Q method for SOCP. A modified Q method is also introduced. Properties of the algorithms are discussed. Convergence proofs are given. Finally, we present numerical results. Citation AdvOl-Report#2004/15 McMaster University, Advanced Optimization Laboratory Article Download View The Q Method for Second-order Cone Programming

On the Behavior of the Homogeneous Self-Dual Model for Conic Convex Optimization

There is a natural norm associated with a starting point of the homogeneous self-dual (HSD) embedding model for conic convex optimization. In this norm two measures of the HSD model’s behavior are precisely controlled independent of the problem instance: (i) the sizes of epsilon-optimal solutions, and (ii) the maximum distance of epsilon-optimal solutions to the … Read more

A Stable Iterative Method for Linear Programming

This paper studies a new primal-dual interior/exterior-point method for linear programming. We begin with the usual perturbed primal-dual optimality equations $F_\mu(x,y,z)=0$. Under nondegeneracy assumptions, this nonlinear system is well-posed, i.e. it has a nonsingular Jacobian at optimality and is not necessarily ill-conditioned as the iterates approach optimality. We use a simple preprocessing step to eliminate … Read more

A New Conjugate Gradient Algorithm Incorporating Adaptive Ellipsoid Preconditioning

The conjugate gradient (CG) algorithm is well-known to have excellent theoretical properties for solving linear systems of equations $Ax = b$ where the $n\times n$ matrix $A$ is symmetric positive definite. However, for extremely ill-conditioned matrices the CG algorithm performs poorly in practice. In this paper, we discuss an adaptive preconditioning procedure which improves the … Read more

A New Complexity Result on Solving the Markov Decision Problem

We present a new complexity result on solving the Markov decision problem (MDP) with $n$ states and a number of actions for each state, a special class of real-number linear programs with the Leontief matrix structure. We prove that, when the discount factor $\theta$ is strictly less than $1$, the problem can be solved in … Read more

A survey of the S-lemma

In this survey we review the many faces of the S-lemma, a result about the correctness of the S-procedure. The basic idea of this widely used method came from control theory but it has important consequences in quadratic and semidefinite optimization, convex geometry and linear algebra as well. These were active research areas, but as … Read more

Perturbation analysis of second order programming problems

We discuss first and second order optimality conditions for nonlinear second-order cone programming problems, and their relation with semidefinite programming problems. For doing this we extend in an abstract setting the notion of optimal partition. Then we state a characterization of strong regularity in terms of second order optimality conditions. Citation Research Report 5293 (August … Read more

Dual versus primal-dual interior-point methods for linear and conic programming

We observe a curious property of dual versus primal-dual path-following interior-point methods when applied to unbounded linear or conic programming problems in dual form. While primal-dual methods can be viewed as implicitly following a central path to detect primal infeasibility and dual unboundedness, dual methods are implicitly moving {\em away} from the analytic center of … Read more

Complex Quadratic Optimization and Semidefinite Programming

In this paper we study the approximation algorithms for a class of discrete quadratic optimization problems in the Hermitian complex form. A special case of the problem that we study corresponds to the max-3-cut model used in a recent paper of Goemans and Williamson. We first develop a closed-form formula to compute the probability of … Read more