Faster approximation algorithms for packing and covering problems

We adapt a method due to Nesterov so as to obtain an algorithm for solving block-angular fractional packing or covering problems to relative tolerance epsilon, while using a number of iterations that grows polynomially in the size of the problem and whose dependency on epsilon is proportional to 1/epsilon. Citation CORC report TR-2004-09, Computational Optimization … Read more

Interior point methods for large-scale linear programming

We discuss interior point methods for large-scale linear programming, with an emphasis on methods that are useful for problems arising in telecommunications. We give the basic framework of a primal-dual interior point method, and consider the numerical issues involved in calculating the search direction in each iteration, including the use of factorization methods and/or preconditioned … Read more

A NEW SELF-CONCORDANT BARRIER FOR THE HYPERCUBE

In this paper we introduce a new barrier function $\sum\limits_{i=1}^n(2x_i-1)[\ln{x_i}-\ln(1-x_i)]$ to solve the following optimization problem: $\min\,\, f(x)$ subject to: $Ax=b;\;\;0\leq x\leq e$. We show that this function is a $(3/2)n$-self-concordant barrier on the hypercube $[0,1]^n$. We prove that the central path is well defined and that under an additional assumption on the objective function, … Read more

Interior Point Trajectories and a Homogeneous Model for Nonlinear Complementarity Problems over Symmetric Cones

We study the continuous trajectories for solving monotone nonlinear mixed complementarity problems over symmetric cones. While the analysis in Faybusovich (1997) depends on the optimization theory of convex log-barrier functions, our approach is based on the paper of Monteiro and Pang (1998), where a vast set of conclusions concerning continuous trajectories is shown for monotone … Read more

Second-order Cone Programming Methods for Total Variation-based Image Restoration

In this paper we present optimization algorithms for image restoration based on the total variation (TV) minimization framework of L. Rudin, S. Osher and E. Fatemi (ROF). Our approach formulates TV minimization as a second-order cone program which is then solved by interior-point algorithms that are efficient both in practice (using nested dissection and domain … Read more

Sensitivity analysis in linear optimization: Invariant support set intervals

Sensitivity analysis is one of the most nteresting and preoccupying areas in optimization. Many attempts are made to investigate the problem’s behavior when the input data changes. Usually variation occurs in the right hand side of the constraints and/or the objective function coefficients. Degeneracy of optimal solutions causes considerable difficulties in sensitivity analysis. In this … Read more

Adaptive Large Neighborhood Self-Regular Predictor-Corrector IPMs for LO

It is known that predictor-corrector methods in a large neighborhood of the central path are among the most efficient interior point methods (IPMs) for linear optimization (LO) problems. The best iteration bound based on the classical logarithmic barrier function is $O\left(n\log{\frac{n}{\epsilon}}\right)$. In this paper we propose a family of self-regular proximity based predictor-corrector (SR-PC) IPM … Read more

Symmetry Points of Convex Set: Basic Properties and Computational Complexity

Given a convex body S and a point x \in S, let sym(x,S) denote the symmetry value of x in S: sym(x,S):= max{t : x + t(x – y) \in S for every y \in S}, which essentially measures how symmetric S is about the point x, and define sym(S):=\max{sym(x,S) : x \in S }. … Read more

Recovering Risk-Neutral Probability Density Functions from Options Prices using Cubic Splines

We present a new approach to estimate the risk-neutral probability density function (pdf) of the future prices of an underlying asset from the prices of options written on the asset. The estimation is carried out in the space of cubic spline functions, yielding appropriate smoothness. The resulting optimization problem, used to invert the data and … Read more

On exploiting structure induced when modelling an intersection of cones in conic optimization

Conic optimization is the problem of optimizing a linear function over an intersection of an affine linear manifold with the Cartesian product of convex cones. However, many real world conic models involves an intersection rather than the product of two or more cones. It is easy to deal with an intersection of one or more … Read more