Local Minima and Convergence in Low-Rank Semidefinite Programming

The low-rank semidefinite programming problem (LRSDP_r) is a restriction of the semidefinite programming problem (SDP) in which a bound r is imposed on the rank of X, and it is well known that LRSDP_r is equivalent to SDP if r is not too small. In this paper, we classify the local minima of LRSDP_r and … Read more

Generalized Lagrangian Duals and Sums of Squares Relaxations of Sparse Polynomial Optimization Problems

Sequences of generalized Lagrangian duals and their SOS (sums of squares of polynomials) relaxations for a POP (polynomial optimization problem) are introduced. Sparsity of polynomials in the POP is used to reduce the sizes of the Lagrangian duals and their SOS relaxations. It is proved that the optimal values of the Lagrangian duals in the … Read more

Sparsity in Sums of Squares of Polynomials

Representation of a given nonnegative multivariate polynomial in terms of a sum of squares of polynomials has become an essential subject in recent developments of sums of squares optimization and SDP (semidefinite programming) relaxation of polynomial optimization problems. We disscuss effective methods to obtain a simpler representation of a “sparse” polynomial as a sum of … Read more

A Pivotting Procedure for a Class of Second-Order Cone Programming

We propose a pivotting procedure for a class of Second-Order Cone Programming (SOCP) having one second-order cone. We introduce a dictionary, basic variables, nonbasic variables, and other necessary notions to define a pivot for the class of SOCP. In a pivot, two-dimensional SOCP subproblems are solved to decide which variables should be entering to or … Read more

On Tail Decay and Moment Estimates of a Condition Number for Random Linear Conic Systems

In this paper we study the distribution tails and the moments of a condition number which arises in the study of homogeneous systems of linear inequalities. We consider the case where this system is defined by a Gaussian random matrix and characterise the exact decay rates of the distribution tails, improve the existing moment estimates, … Read more

A masked spectral bound for maximum-entropy sampling

We introduce a new masked spectral bound for the maximum-entropy sampling problem. This bound is a continuous generalization of the very effective spectral partition bound. Optimization of the masked spectral bound requires the minimization of a nonconvex, nondifferentiable function over a semidefiniteness constraint. We describe a nonlinear affine scaling algorithm to approximately minimize the bound. … Read more

A Semidefinite Programming Approach for the Nearest Correlation Matrix Problem

The nearest \cm\ problem is to find a positive semidefinite matrix with unit diagonal that is nearest in the Frobenius norm to a given symmetric matrix $A$. This problem can be formulated as an optimization problem with a quadratic objective function and semidefinite programming constraints. Using such a formulation, we derive and test a primal-dual … Read more

A Comparative Study of New Barrier Functions for Primal-Dual Interior-Point Algorithms in Linear Optimization

Recently, so-called self-regular barrier functions for primal-dual interior-point methods (IPMs) for linear optimization were introduced. Each such barrier function is determined by its (univariate) self-regular kernel function. We introduce a new class of kernel functions. The class is defined by some simple conditions on the kernel function and its derivatives. These properties enable us to … Read more

The structured distance to ill-posedness for conic systems

An important measure of conditioning of a conic linear system is the size of the smallest structured perturbation making the system ill-posed. We show that this measure is unchanged if we restrict to perturbations of low rank. We thereby derive a broad generalization of the classical Eckart-Young result characterizing the distance to ill-posedness for a … Read more

ON THE LIMITING PROPERTIES OF THE AFFINE-SCALING DIRECTIONS

We study the limiting properties of the affine-scaling directions for linear programming problems. The worst-case angle between the affine-scaling directions and the objective function vector provides an interesting measure that has been very helpful in convergence analyses and in understanding the behaviour of various interior-point algorithms. We establish new relations between this measure and some … Read more