Sparse PSD approximation of the PSD cone

While semidefinite programming (SDP) problems are polynomially solvable in theory, it is often difficult to solve large SDP instances in practice. One technique to address this issue is to relax the global positive-semidefiniteness (PSD) constraint and only enforce PSD-ness on smaller k times k principal submatrices — we call this the sparse SDP relaxation. Surprisingly, … Read more

On convex hulls of epigraphs of QCQPs

Quadratically constrained quadratic programs (QCQPs) are a fundamental class of optimization problems well-known to be NP-hard in general. In this paper we study sufficient conditions for a convex hull result that immediately implies that the standard semidefinite program (SDP) relaxation of a QCQP is tight. We begin by outlining a general framework for proving such … Read more

The maximum hBccolorable subgraph problem and related problems

The maximum $k$-colorable subgraph (M$k$CS) problem is to find an induced $k$-colorable subgraph with maximum cardinality in a given graph. This paper is an in-depth analysis of the M$k$CS problem that considers various semidefinite programming relaxations including their theoretical and numerical comparisons. To simplify these relaxations we exploit the symmetry arising from permuting the colors, … Read more

Centering ADMM for the Semidefinite Relaxation of the QAP

We propose a new method for solving the semidefinite (SD) relaxation of the quadratic assignment problem (QAP), called the Centering ADMM. The Centering ADMM is an alternating direction method of multipliers (ADMM) combining the centering steps used in the interior-point method. The first stage of the Centering ADMM updates the iterate so that it approaches … Read more

Exact semidefinite programming bounds for packing problems

In this paper we give an algorithm to round the floating point output of a semidefinite programming solver to a solution over the rationals or a quadratic extension of the rationals. We apply this to get sharp bounds for packing problems, and we use these sharp bounds to prove that certain optimal packing configurations are … Read more

Facial Reduction for Symmetry Reduced Semidefinite Programs

We consider both facial and symmetry reduction techniques for semidefinite programming, SDP. We show that the two together fit surprisingly well in an alternating direction method of multipliers, ADMM, approach. The combination of facial and symmetry reduction leads to a significant improvement in both numerical stability and running time for both the ADMM and interior … Read more

A New Preconditioning Approach for an Interior Point-Proximal Method of Multipliers for Linear and Convex Quadratic Programming

In this paper, we address the efficient numerical solution of linear and quadratic programming problems, often of large scale. With this aim, we devise an infeasible interior point method, blended with the proximal method of multipliers, which in turn results in a primal-dual regularized interior point method. Application of this method gives rise to a … Read more

A Limiting Analysis on Regularization of Singular SDP and its Implication to Infeasible Interior-point Algorithms

We consider primal-dual pairs of semidefinite programs and assume that they are ill-posed, i.e., both primal and dual are either weakly feasible or weakly infeasible. Under such circumstances, strong duality may break down and the primal and dual might have a nonzero duality gap. Nevertheless, there are arbitrary small perturbations to the problem data which … Read more

Gaddum’s test for symmetric cones

A real symmetric matrix “A” is copositive if the inner product if Ax and x is nonnegative for all x in the nonnegative orthant. Copositive programming has attracted a lot of attention since Burer showed that hard nonconvex problems can be formulated as completely-positive programs. Alas, the power of copositive programming is offset by its … Read more

Short simplex paths in lattice polytopes

We consider the problem of optimizing a linear function over a lattice polytope P contained in [0,k]^n and defined via m linear inequalities. We design a simplex algorithm that, given an initial vertex, reaches an optimal vertex by tracing a path along the edges of P of length at most O(n^6 k log k). The … Read more