On the closure of the completely positive semidefinite cone and linear approximations to quantum colorings

We investigate structural properties of the completely positive semidefinite cone, consisting of all the nxn symmetric matrices that admit a Gram representation by positive semidefinite matrices of any size. This cone has been introduced to model quantum graph parameters as conic optimization problems. Recently it has also been used to characterize the set Q of … Read more

Vector Space Decomposition for Linear Programs

This paper describes a vector space decomposition algorithmic framework for linear programming guided by dual feasibility considerations. The resolution process moves from one basic solution to the next according to an exchange mechanism which is defined by a direction and a post-evaluated step size. The core component of this direction is obtained via the smallest … Read more

A corrected semi-proximal ADMM for multi-block convex optimization and its application to DNN-SDPs

In this paper we propose a corrected semi-proximal ADMM (alternating direction method of multipliers) for the general $p$-block $(p\!\ge 3)$ convex optimization problems with linear constraints, aiming to resolve the dilemma that almost all the existing modified versions of the directly extended ADMM, although with convergent guarantee, often perform substantially worse than the directly extended … Read more

Six mathematical gems from the history of Distance Geometry

This is a partial account of the fascinating history of Distance Geometry. We make no claim to completeness, but we do promise a dazzling display of beautiful, elementary mathematics. We prove Heron’s formula, Cauchy’s theorem on the rigidity of polyhedra, Cayley’s generalization of Heron’s formula to higher dimensions, Menger’s characterization of abstract semi-metric spaces, a … Read more

Exact solutions to Super Resolution on semi-algebraic domains in higher dimensions

We investigate the multi-dimensional Super Resolution problem on closed semi-algebraic domains for various sampling schemes such as Fourier or moments. We present a new semidefinite programming (SDP) formulation of the l1-minimization in the space of Radon measures in the multi-dimensional frame on semi-algebraic sets. While standard approaches have focused on SDP relaxations of the dual … Read more

Submodular Minimization in the Context of Modern LP and MILP Methods and Solvers

We consider the application of mixed-integer linear programming (MILP) solvers to the minimization of submodular functions. We evaluate common large-scale linear-programming (LP) techniques (e.g., column generation, row generation, dual stabilization) for solving a LP reformulation of the submodular minimization (SM) problem. We present heuristics based on the LP framework and a MILP solver. We evaluated … Read more

Quadratic Cone Cutting Surfaces for Quadratic Programs with On-Off Constraints

We study the convex hull of a set arising as a relaxation of difficult convex mixed integer quadratic programs (MIQP). We characterize the extreme points of our set and the extreme points of its continuous relaxation. We derive four quadratic cutting surfaces that improve the strength of the continuous relaxation. Each of the cutting surfaces … Read more

New Semidefinite Programming Relaxations for the Linear Ordering and the Traveling Salesman Problem

In 2004 Newman suggested a semidefinite programming relaxation for the Linear Ordering Problem (LOP) that is related to the semidefinite program used in the Goemans-Williamson algorithm to approximate the Max Cut problem. Her model is based on the observation that linear orderings can be fully described by a series of cuts. Newman shows that her … Read more

A Semidefinite Opimization Approach to the Target Visitation Problem

We propose an exact algorithm for the Target Visitation Problem (TVP). The (TVP) is a composition of the Linear Ordering Problem and the Traveling Salesman Problem. It has several military and non-military applications, where two important, often competing factors are the overall distance traveled (e.g. by an unmanned aerial vehicle) and the visiting sequence of … Read more

Looking for strong polynomiality in Linear Programming : Arguments, conjectures, experiments, findings, and conclusion.

Until now it has been an open question whether the Linear Programming (LP) problem can be solved in strong polynomial time. The simplex algorithm with its combinatorial nature does not even offer a polynomial bound, whereas the complexity of the polynomial algorithms by Khachiyan and Karmarkar is based on the number of variables n, and … Read more