Optimization over Structured Subsets of Positive Semidefinite Matrices via Column Generation

We develop algorithms for inner approximating the cone of positive semidefinite matrices via linear programming and second order cone programming. Starting with an initial linear algebraic approximation suggested recently by Ahmadi and Majumdar, we describe an iterative process through which our approximation is improved at every step. This is done using ideas from column generation … Read more

Strengthening the SDP Relaxation of AC Power Flows with Convex Envelopes, Bound Tightening, and Lifted Nonlinear Cuts

This paper considers state-of-the-art convex relaxations for the AC power flow equations and introduces new valid cuts based on convex envelopes and lifted nonlinear constraints. These valid linear inequalities strengthen existing semidefinite and quadratic programming relaxations and dominate existing cuts proposed in the litterature. Together with model intersections and bound tightening, the new linear cuts … Read more

Data-Driven Inverse Optimization with Imperfect Information

In data-driven inverse optimization an observer aims to learn the preferences of an agent who solves a parametric optimization problem depending on an exogenous signal. Thus, the observer seeks the agent’s objective function that best explains a historical sequence of signals and corresponding optimal actions. We focus here on situations where the observer has imperfect … Read more

Facial Reduction and Partial Polyhedrality

We present FRA-Poly, a facial reduction algorithm (FRA) for conic linear programs that is sensitive to the presence of polyhedral faces in the cone. The main goals of FRA and FRA-Poly are the same, i.e., finding the minimal face containing the feasible region and detecting infeasibility, but FRA-Poly treats polyhedral constraints separately. This idea enables … Read more

Benders Decomposition and Column-and-Row Generation for Solving Large-Scale Linear Programs with Column-Dependent-Rows

In a recent work, Muter et al. (2013a) identified and characterized a general class of linear programming (LP) problems – known as problems with column-dependent-rows (CDR-problems). These LPs feature two sets of constraints with mutually exclusive groups of variables in addition to a set of structural linking constraints, in which variables from both groups appear … Read more

DC Decomposition of Nonconvex Polynomials with Algebraic Techniques

We consider the problem of decomposing a multivariate polynomial as the difference of two convex polynomials. We introduce algebraic techniques which reduce this task to linear, second order cone, and semidefinite programming. This allows us to optimize over subsets of valid difference of convex decompositions (dcds) and find ones that speed up the convex-concave procedure … Read more

Sum of Squares Basis Pursuit with Linear and Second Order Cone Programming

We devise a scheme for solving an iterative sequence of linear programs (LPs) or second order cone programs (SOCPs) to approximate the optimal value of any semidefinite program (SDP) or sum of squares (SOS) program. The first LP and SOCP-based bounds in the sequence come from the recent work of Ahmadi and Majumdar on diagonally … Read more

On the Lovasz Theta Function and Some Variants

The Lovasz theta function of a graph is a well-known upper bound on the stability number. It can be computed efficiently by solving a semidefinite program (SDP). Actually, one can solve either of two SDPs, one due to Lovasz and the other to Groetschel et al. The former SDP is often thought to be preferable … Read more

Polynomial SDP Cuts for Optimal Power Flow

The use of convex relaxations has lately gained considerable interest in Power Systems. These relaxations play a major role in providing quality guarantees for non-convex optimization problems. For the Optimal Power Flow (OPF) prob- lem, the semidefinite programming (SDP) relaxation is known to produce tight lower bounds. Unfortunately, SDP solvers still suffer from a lack … Read more

The Lyapunov rank of an improper cone

Let K be a closed convex cone with dual K^* in a finite-dimensional real inner-product space V. The complementarity set of K is C(K) = { (x, s) in K × K^* | = 0 }. We say that a linear transformation L : V -> V is Lyapunov-like on K if = 0 for all (x, … Read more