On the Computational Complexity of Membership Problems for the Completely Positive Cone and its Dual

Copositive programming has become a useful tool in dealing with all sorts of optimisation problems. It has however been shown by Murty and Kabadi [K.G. Murty and S.N. Kabadi, Some NP-complete problems in quadratic and nonlinear programming, Mathematical Programming, 39, no.2:117–129, 1987] that the strong membership problem for the copositive cone, that is deciding whether … Read more

Implementation of a block-decomposition algorithm for solving large-scale conic semidefinite programming problems

In this paper, we consider block-decomposition first-order methods for solving large-scale conic semidefinite programming problems. Several ingredients are introduced to speed-up the method in its pure form such as: an aggressive choice of stepsize for performing the extragradient step; use of scaled inner products in the primal and dual spaces; dynamic update of the scaled … Read more

An Accelerated Hybrid Proximal Extragradient Method for Convex Optimization and its Implications to Second-Order Methods

This paper presents an accelerated variant of the hybrid proximal extragradient (HPE) method for convex optimization, referred to as the accelerated HPE (A-HPE) method. Iteration-complexity results are established for the A-HPE method, as well as a special version of it, where a large stepsize condition is imposed. Two specific implementations of the A-HPE method are … Read more

A Computational Study and Survey of Methods for the Single-Row Facility Layout Problem

The single row facility layout problem (SRFLP) is an NP-hard combinatorial optimization problem that is concerned with the arrangement of n departments of given lengths on a line so as to minimize the weighted sum of the distances between department pairs. (SRFLP) is the one-dimensional version of the facility layout problem that seeks to arrange … Read more

A Simple Variant of the Mizuno-Todd-Ye Predictor-Corrector Algorithm and its Objective-Function-Free Complexity

In this paper, we propose a simple variant of the Mizuno-Todd-Ye predictor-corrector algorithm for linear programming problem (LP). Our variant executes a natural finite termination procedure at each iteration and it is easy to implement the algorithm. Our algorithm admits an objective-function free polynomial-time complexity when it is applied to LPs whose dual feasible region … Read more

Inner approximations for polynomial matrix inequalities and robust stability regions

Following a polynomial approach, many robust fixed-order controller design problems can be formulated as optimization problems whose set of feasible solutions is modelled by parametrized polynomial matrix inequalities (PMI). These feasibility sets are typically nonconvex. Given a parametrized PMI set, we provide a hierarchy of linear matrix inequality (LMI) problems whose optimal solutions generate inner … Read more

The Second Order Directional Derivative of Symmetric Matrix-valued Functions

This paper focuses on the study of the second-order directional derivative of a symmetric matrix-valued function of the form $F(X)=P\mbox{diag}[f(\lambda_1(X)),\cdots,f(\lambda_n(X))]P^T$. For this purpose, we first adopt a direct way to derive the formula for the second-order directional derivative of any eigenvalue of a matrix in Torki \cite{Tor01}; Second, we establish a formula for the (parabolic) … Read more

Solving large scale problems over the doubly nonnegative cone

The recent approach of solving large scale semidefinite programs with a first order method by minimizing an augmented primal-dual function is extended to doubly nonnegative programs. Regularity of the augmented primal-dual function is established under the condition of uniqueness and strict complementarity. The application to the doubly nonnegative cone is motivated by the fact that … Read more

How bad is a gradient algorithm for linear programming?

In their 1972 paper ‘How good is the simplex algorithm ?’ Klee and Minty present a class of problems the simplex algorithm for linear programming (LP) is not able to solve in a polynomial way. Later developments have resulted in algorithms by Khachiyan and Karmarkar that do solve LP in a polynomial way, although the … Read more

High accuracy solution of large scale semidefinite programs

We present a first order approach for solving semidefinite programs. Goal of this approach is to compute a solution of the SDP up to high accuracy in spite of using only partial second order information. We propose a hybrid approach that uses an accelerated projection method to generate an approximate solution and then switches to … Read more