Solving Basis Pursuit: Heuristic Optimality Check and Solver Comparison

The problem of finding a minimum l^1-norm solution to an underdetermined linear system is an important problem in compressed sensing, where it is also known as basis pursuit. We propose a heuristic optimality check as a general tool for l^1-minimization, which often allows for early termination by “guessing” a primal-dual optimal pair based on an … Read more

Representing quadratically constrained quadratic programs as generalized copositive programs

We show that any nonconvex quadratically constrained quadratic program(QCQP) can be represented as a generalized copositive program. In fact,we provide two representations. The first is based on the concept of completely positive (CP) matrices over second order cones, while the second is based on CP matrices over the positive semidefinte cone. Our analysis assumes that … Read more

Approximation of rank function and its application to the nearest low-rank correlation matrix

The rank function $\rank(\cdot)$ is neither continuous nor convex which brings much difficulty to the solution of rank minimization problems. In this paper, we provide a unified framework to construct the approximation functions of $\rank(\cdot)$, and study their favorable properties. Particularly, with two families of approximation functions, we propose a convex relaxation method for the … Read more

How to generate weakly infeasible semidefinite programs via Lasserre’s relaxations for polynomial optimization

Examples of weakly infeasible semidefinite programs are useful to test whether semidefinite solvers can detect infeasibility. However, finding non trivial such examples is notoriously difficult. This note shows how to use Lasserre’s semidefinite programming relaxations for polynomial optimization in order to generate examples of weakly infeasible semidefinite programs. Such examples could be used to test … Read more

Implementing the simplex method as a cutting-plane method

We show that the simplex method can be interpreted as a cutting-plane method, assumed that a special pricing rule is used. This approach is motivated by the recent success of the cutting-plane method in the solution of special stochastic programming problems. We compare the classic Dantzig pricing rule and the rule that derives from the … Read more

On the set-semidefinite representation of nonconvex quadratic programs over arbitrary feasible sets

In the paper we prove that any nonconvex quadratic problem over some set $K\subset \mathbb{R}^n$ with additional linear and binary constraints can be rewritten as linear problem over the cone, dual to the cone of K-semidefinite matrices. We show that when K is defined by one quadratic constraint or by one concave quadratic constraint and … Read more

Robust solutions of optimization problems affected by uncertain probabilities

In this paper we focus on robust linear optimization problems with uncertainty regions defined by phi-divergences (for example, chi-squared, Hellinger, Kullback-Leibler). We show how uncertainty regions based on phi-divergences arise in a natural way as confidence sets if the uncertain parameters contain elements of a probability vector. Such problems frequently occur in, for example, optimization … Read more

A lower bound on the optimal self-concordance parameter of convex cones

Let $K \subset \mathbb R^n$ be a regular convex cone, let $e_1,\dots,e_n \in \partial K$ be linearly independent points on the boundary of a compact affine section of the cone, and let $x^* \in K^o$ be a point in the relative interior of this section. For $k = 1,\dots,n$, let $l_k$ be the line through … Read more

Computing the Grothendieck constant of some graph classes

Given a graph $G=([n],E)$ and $w\in\R^E$, consider the integer program ${\max}_{x\in \{\pm 1\}^n} \sum_{ij \in E} w_{ij}x_ix_j$ and its canonical semidefinite programming relaxation ${\max} \sum_{ij \in E} w_{ij}v_i^Tv_j$, where the maximum is taken over all unit vectors $v_i\in\R^n$. The integrality gap of this relaxation is known as the Grothendieck constant $\ka(G)$ of $G$. We present … Read more

Copositive optimization – recent developments and applications

Due to its versatility, copositive optimization receives increasing interest in the Operational Research community, and is a rapidly expanding and fertile field of research. It is a special case of conic optimization, which consists of minimizing a linear function over a cone subject to linear constraints. The diversity of copositive formulations in different domains of … Read more