Strong global convergence properties of algorithms for nonlinear symmetric cone programming

Sequential optimality conditions have played a major role in proving strong global convergence properties of numerical algorithms for many classes of optimization problems. In particular, the way complementarity is dealt is fundamental to achieve a strong condition. Typically, one uses the inner product structure to measure complementarity, which gives a very general approach to a … Read more

Functions associated with the nonconvex second-order cone

The nonconvex second-order cone (nonconvex SOC for short) is a nonconvex extension to the convex second-order cone, in the sense that it consists of any vector divided into two sub-vectors for which the Euclidean norm of the first sub-vector is at least as large as the Euclidean norm of the second sub-vector. This cone can … Read more

Range of the displacement operator of PDHG with applications to quadratic and conic programming

Primal-dual hybrid gradient (PDHG) is a first-order method for saddle-point problems and convex programming introduced by Chambolle and Pock. Recently, Applegate et al. analyzed the behavior of PDHG when applied to an infeasible or unbounded instance of linear programming, and in particular, showed that PDHG is able to diagnose these conditions. Their analysis hinges on … Read more

A hybrid branch-and-bound and interior-point algorithm for stochastic mixed-integer nonlinear second-order cone programming

One of the chief attractions of stochastic mixed-integer second-order cone programming is its diverse applications, especially in engineering (Alzalg and Alioui, {\em IEEE Access}, 10:3522-3547, 2022). The linear and nonlinear versions of this class of optimization problems are still unsolved yet. In this paper, we develop a hybrid optimization algorithm coupling branch-and-bound and primal-dual interior-point … Read more

The Algebraic Structure of the Nonconvex Second-Order Cone

This paper explores the nonconvex second-order cone as a nonconvex conic extension of the known convex second-order cone in optimization, as well as a higher-dimensional conic extension of the known causality cone in relativity. The nonconvex second-order cone can be used to reformulate nonconvex quadratic programming and nonconvex quadratically constrained quadratic program in conic format. … Read more

Compressed Sensing: A Discrete Optimization Approach

We study the Compressed Sensing (CS) problem, which is the problem of finding the most sparse vector that satisfies a set of linear measurements up to some numerical tolerance. CS is a central problem in Statistics, Operations Research and Machine Learning which arises in applications such as signal processing, data compression, image reconstruction, and multi-label … Read more

An easily computable upper bound on the Hoffman constant for homogeneous inequality systems

Let $A\in \mathbb{R}^{m\times n}\setminus \{0\}$ and $P:=\{x:Ax\le 0\}$. This paper provides a procedure to compute an upper bound on the following {\em homogeneous Hoffman constant} \[ H_0(A) := \sup_{u\in \mathbb{R}^n \setminus P} \frac{\text{dist}(u,P)}{\text{dist}(Au, \mathbb{R}^m_-)}. \] In sharp contrast to the intractability of computing more general Hoffman constants, the procedure described in this paper is entirely … Read more

Weighted Geometric Mean, Minimum Mediated Set, and Optimal Second-Order Cone Representation

We study optimal second-order cone representations for weighted geometric means, which turns out to be closely related to minimum mediated sets. Several lower bounds and upper bounds on the size of optimal second-order cone representations are proved. In the case of bivariate weighted geometric means (equivalently, one dimensional mediated sets), we are able to prove … Read more

A Quadratically Convergent Sequential Programming Method for Second-Order Cone Programs Capable of Warm Starts

We propose a new method for linear second-order cone programs. It is based on the sequential quadratic programming framework for nonlinear programming. In contrast to interior point methods, it can capitalize on the warm-start capabilities of active-set quadratic programming subproblem solvers and achieve a local quadratic rate of convergence. In order to overcome the non-differentiability … Read more

Hub Network Design Problem with Capacity, Congestion and Stochastic Demand Considerations

We introduce the hub network design problem with congestion, capacity, and stochastic demand considerations (HNDC), which generalizes the classical hub location problem in several directions. In particular, we extend state-of-the-art by integrating capacity acquisition decision and congestion cost effect into the problem and allowing dynamic routing for origin-destination pairs. Connecting strategic and operational level decisions, … Read more