QCQP with Extra Constant Modulus Constraints: Theory and Applications on QoS Constrained Hybrid Beamforming for mmWave MU-MIMO

The constant modulus constraint is widely used in analog beamforming, hybrid beamforming, intelligent reflecting surface design, and radar waveform design. The quadratically constrained quadratic programming (QCQP) problem is also widely used in signal processing. However, the QCQP with extra constant modulus constraints was not systematically studied in mathematic programming and signal processing. For example, the … Read more

Minimization over the l1-ball using an active-set non-monotone projected gradient

The l1-ball is a nicely structured feasible set that is widely used in many fields (e.g., machine learning, statistics and signal analysis) to enforce some sparsity in the model solutions. In this paper, we devise an active-set strategy for efficiently dealing with minimization problems over the l1-ball and embed it into a tailored algorithmic scheme … Read more

A spectral PALM algorithm for matrix and tensor-train based Dictionary Learning

Dictionary Learning (DL) is one of the leading sparsity promoting techniques in the context of image classification, where the “dictionary” matrix D of images and the sparse matrix X are determined so as to represent a redundant image dataset. The resulting constrained optimization problem is nonconvex and non-smooth, providing several computational challenges for its solution. … Read more

Bishop-Phelps cones given by an equation in Banach spaces

In this work, we study Bishop-Phelps cones (briefly, BP cones) given by an equation in Banach spaces. Due to the special form, these cones enjoy interesting properties. We show that nontrivial BP cones given by an equation form a “large family” in some sense in any Banach space and they can be used to characterize … Read more

A novel approach for bilevel programs based on Wolfe duality

This paper considers a bilevel program, which has many applications in practice. To develop effective numerical algorithms, it is generally necessary to transform the bilevel program into a single-level optimization problem. The most popular approach is to replace the lower-level program by its KKT conditions and then the bilevel program can be transformed into a … Read more

First- and second-order optimality conditions for second-order cone and semidefinite programming under a constant rank condition

The well known constant rank constraint qualification [Math. Program. Study 21:110–126, 1984] introduced by Janin for nonlinear programming has been recently extended to a conic context by exploiting the eigenvector structure of the problem. In this paper we propose a more general and geometric approach for defining a new extension of this condition to the … Read more

Quantifying uncertainty with ensembles of surrogates for blackbox optimization

This work is in the context of blackbox optimization where the functions defining the problem are expensive to evaluate and where no derivatives are available. A tried and tested technique is to build surrogates of the objective and the constraints in order to conduct the optimization at a cheaper computational cost. This work proposes different … Read more

An extension of the Reformulation-Linearization Technique to nonlinear optimization

We introduce a novel Reformulation-Perspectification Technique (RPT) to obtain convex approximations of nonconvex continuous optimization problems. RPT consists of two steps, those are, a reformulation step and a perspectification step. The reformulation step generates redundant nonconvex constraints from pairwise multiplication of the existing constraints. The perspectification step then convexifies the nonconvex components by using perspective … Read more

Inexact Sequential Quadratic Optimization for Minimizing a Stochastic Objective Function Subject to Deterministic Nonlinear Equality Constraints

An algorithm is proposed, analyzed, and tested experimentally for solving stochastic optimization problems in which the decision variables are constrained to satisfy equations defined by deterministic, smooth, and nonlinear functions. It is assumed that constraint function and derivative values can be computed, but that only stochastic approximations are available for the objective function and its … Read more

An Efficient Retraction Mapping for the Symplectic Stiefel Manifold

This article introduces a new retraction on the symplectic Stiefel manifold. The operation that requires the highest computational cost to compute the novel retraction is a matrix inversion of size $2p$–by–$2p$, which is much less expensive than those required for the available retractions in the literature. Later, with the new retraction, we design a constraint … Read more