How do exponential size solutions arise in semidefinite programming?

Semidefinite programs (SDPs) are some of the most popular and broadly applicable optimization problems to emerge in the last thirty years. A curious pathology of SDPs, illustrated by a classical example of Khachiyan, is that their solutions may need exponential space to even write down. Exponential size solutions are the main obstacle to solve a … Read more

A Matrix-Free Trust-Region Newton Algorithm for Convex-Constrained Optimization

We describe a matrix-free trust-region algorithm for solving convex-constrained optimization problems that uses the spectral projected gradient method to compute trial steps. To project onto the intersection of the feasible set and the trust region, we reformulate and solve the dual projection problem as a one-dimensional root finding problem. We demonstrate our algorithm’s performance on … Read more

ALESQP: An augmented Lagrangian equality-constrained SQP method for optimization with general constraints

We present a new algorithm for infinite-dimensional optimization with general constraints, called ALESQP. In short, ALESQP is an augmented Lagrangian method that penalizes inequality constraints and solves equality-constrained nonlinear optimization subproblems at every iteration. The subproblems are solved using a matrix-free trust-region sequential quadratic programming (SQP) method that takes advantage of iterative, i.e., inexact linear … Read more

Weak notions of nondegeneracy in nonlinear semidefinite programming

The constraint nondegeneracy condition is one of the most relevant and useful constraint qualifications in nonlinear semidefinite programming. It can be characterized in terms of any fixed orthonormal basis of the, let us say, $\ell$-dimensional kernel of the constraint matrix, by the linear independence of a set of $\ell(\ell+1)/2$ derivative vectors. We show that this … Read more

A Distributed and Secure Algorithm for Computing Dominant SVD Based on Projection Splitting

In this paper, we propose and study a distributed and secure algorithm for computing dominant (or truncated) singular value decompositions (SVD) of large and distributed data matrices. We consider the scenario where each node privately holds a subset of columns and only exchanges “safe” information with other nodes in a collaborative effort to calculate a … Read more

Multipliers Correction Methods for Optimization Problems over the Stiefel Manifold

We propose a class of multipliers correction methods to minimize a differentiable function over the Stiefel manifold. The proposed methods combine a function value reduction step with a proximal correction step. The former one searches along an arbitrary descent direction in the Euclidean space instead of a vector in the tangent space of the Stiefel … Read more

Homogeneous polynomials and spurious local minima on the unit sphere

We consider forms on the Euclidean unit sphere. We obtain obtain a simple and complete characterization of all points that satisfies the standard second-order necessary condition of optimality. It is stated solely in terms of the value of (i) f, (ii) the norm of its gradient, and (iii) the first two smallest eigenvalues of its … Read more

Constrained stochastic blackbox optimization using a progressive barrier and probabilistic estimates

This work introduces the StoMADS-PB algorithm for constrained stochastic blackbox optimization, which is an extension of the mesh adaptive direct-search (MADS) method originally developed for deterministic blackbox optimization under general constraints. The values of the objective and constraint functions are provided by a noisy blackbox, i.e., they can only be computed with random noise whose … Read more

Exterior-point Optimization for Nonconvex Learning

In this paper we present the nonconvex exterior-point optimization solver (NExOS)—a novel first-order algorithm tailored to constrained nonconvex learning problems. We consider the problem of minimizing a convex function over nonconvex constraints, where the projection onto the constraint set is single-valued around local minima. A wide range of nonconvex learning problems have this structure including … Read more

A Reformulation-Linearization Technique for Optimization over Simplices

We study non-convex optimization problems over simplices. We show that for a large class of objective functions, the convex approximation obtained from the Reformulation-Linearization Technique (RLT) admits optimal solutions that exhibit a sparsity pattern. This characteristic of the optimal solutions allows us to conclude that (i) a linear matrix inequality constraint, which is often added … Read more