A primal-dual interior point method for nonlinear optimization over second order cones

In this paper, we are concerned with nonlinear minimization problems with second order cone constraints. A primal-dual interior point method is proposed for solving the problems. We also propose a new primal-dual merit function by combining the barrier penalty function and the potential function within the framework of the line search strategy, and show the … Read more

A General Robust-Optimization Formulation for Nonlinear Programming

Most research in robust optimization has so far been focused on inequality-only, convex conic programming with simple linear models for uncertain parameters. Many practical optimization problems, however, are nonlinear and non-convex. Even in linear programming, coefficients may still be nonlinear functions of uncertain parameters. In this paper, we propose robust formulations that extend the robust-optimization … Read more

Transposition theorems and qualification-free optimality conditions

New theorems of the alternative for polynomial constraints (based on the Positivstellensatz from real algebraic geometry) and for linear constraints (generalizing the transposition theorems of Motzkin and Tucker) are proved. Based on these, two Karush-John optimality conditions — holding without any constraint qualification — are proved for single- or multi-objective constrained optimization problems. The first … Read more

Solving Multi-Leader-Follower Games

Multi-leader-follower games arise when modeling competition between two or more dominant firms and lead in a natural way to equilibrium problems with equilibrium constraints (EPECs). We examine a variety of nonlinear optimization and nonlinear complementarity formulations of EPECs. We distinguish two broad cases: problems where the leaders can cost-differentiate and problems with price-consistent followers. We … Read more

Elastic-Mode Algorithms for Mathematical Programs with Equilibrium Constraints: Global Convergence and Stationarity Properties

The elastic-mode formulation of the problem of minimizing a nonlinear function subject to equilibrium constraints has appealing local properties in that, for a finite value of the penalty parameter, local solutions satisfying first- and second-order necessary optimality conditions for the original problem are also first- and second-order points of the elastic-mode formulation. Here we study … Read more

Local Analysis of the Feasible Primal-Dual Interior-Point Method

In this paper we analyze the rate of local convergence of the Newton primal-dual interior-point method when the iterates are kept strictly feasible with respect to the inequality constraints. It is shown under the classical conditions that the rate is q-quadratic when the functions associated to the inequality constraints define a locally concave feasible region. … Read more

On Augmented Lagrangian methods with general lower-level constraints

Augmented Lagrangian methods with general lower-level constraints are considered in the present research. These methods are useful when efficient algorithms exist for solving subproblems where the constraints are only of the lower-level type. Two methods of this class are introduced and analyzed. Inexact resolution of the lower-level constrained subproblems is considered. Global convergence is proved … Read more

Adaptive Barrier Strategies for Nonlinear Interior Methods

This paper considers strategies for selecting the barrier parameter at every iteration of an interior-point method for nonlinear programming. Numerical experiments suggest that adaptive choices, such as Mehrotra’s probing procedure, outperform static strategies that hold the barrier parameter fixed until a barrier optimality test is satisfied. A new adaptive strategy is proposed based on the … Read more

Active Set Identification in Nonlinear Programming

Techniques that identify the active constraints at a solution of a nonlinear programming problem from a point near the solution can be a useful adjunct to nonlinear programming algorithms. They have the potential to improve the local convergence behavior of these algorithms, and in the best case can reduce an inequality constrained problem to an … Read more

On the Global Convergence of a Trust Region Method for Solving Nonlinear Constraints Infeasibility Problem

A framework for proving global convergence for a class of nonlinear constraints infeasibility problem is presented without assuming that the Jacobian has full rank everywhere. The underlying method is based on the simple sufficient reduction criteria where trial points are accepted provided there is a sufficient decrease in the constraints violation function. The proposed methods … Read more