Simplified Versions of the Conditional Gradient Method

We suggest simple modifications of the conditional gradient method for smooth optimization problems, which maintain the basic convergence properties, but reduce the implementation cost of each iteration essentially. Namely, we propose the step-size procedure without any line-search, and inexact solution of the direction finding subproblem. Preliminary results of computational tests confirm efficiency of the proposed … Read more

Tight-and-cheap conic relaxation for the AC optimal power flow problem

The classical alternating current optimal power flow problem is highly nonconvex and generally hard to solve. Convex relaxations, in particular semidefinite, second-order cone, convex quadratic, and linear relaxations, have recently attracted significant interest. The semidefinite relaxation is the strongest among them and is exact for many cases. However, the computational efficiency for solving large-scale semidefinite … Read more

New Constraint Qualifications with Second-Order Properties in Nonlinear Optimization

In this paper we present and discuss new constraint qualifications to ensure the validity of well known second-order properties in nonlinear optimization. Here, we discuss conditions related to the so-called basic second-order condition, where a new notion of polar pairing is introduced in order to replace the polar operation, useful in the first-order case. We … Read more

Sum of squares certificates for stability of planar, homogeneous, and switched systems

We show that existence of a global polynomial Lyapunov function for a homogeneous polynomial vector field or a planar polynomial vector field (under a mild condition) implies existence of a polynomial Lyapunov function that is a sum of squares (sos) and that the negative of its derivative is also a sum of squares. This result … Read more

A Stochastic Trust Region Algorithm Based on Careful Step Normalization

An algorithm is proposed for solving stochastic and finite sum minimization problems. Based on a trust region methodology, the algorithm employs normalized steps, at least as long as the norms of the stochastic gradient estimates are within a specified interval. The complete algorithm—which dynamically chooses whether or not to employ normalized steps—is proved to have … Read more

Deterministic Global Optimization with Artificial Neural Networks Embedded

Artificial neural networks (ANNs) are used in various applications for data-driven black-box modeling and subsequent optimization. Herein, we present an efficient method for deterministic global optimization of ANN embedded optimization problems. The proposed method is based on relaxations of algorithms using McCormick relaxations in a reduced-space [\textit{SIOPT}, 20 (2009), pp. 573-601] including the convex and … Read more

Optimality Conditions and Constraint Qualifications for Generalized Nash Equilibrium Problems and their Practical Implications

Generalized Nash Equilibrium Problems (GNEPs) are a generalization of the classic Nash Equilibrium Problems (NEPs), where each player’s strategy set depends on the choices of the other players. In this work we study constraint qualifications and optimality conditions tailored for GNEPs and we discuss their relations and implications for global convergence of algorithms. Surprisingly, differently … Read more

Mixed-Integer PDE-Constrained Optimal Control of Gas Networks

We develop a mixed-integer optimal control model with partial differential equation (PDE) constraints for gas transport networks, designed for controlling extreme state transitions, such as flow reversals. Our model shows how to combine binary compressor controls with PDE flow models. We model the flow of gas using a variant of the Euler equations, which we … Read more

Model and Discretization Error Adaptivity within Stationary Gas Transport Optimization

The minimization of operation costs for natural gas transport networks is studied. Based on a recently developed model hierarchy ranging from detailed models of instationary partial differential equations with temperature dependence to highly simplified algebraic equations, modeling and discretization error estimates are presented to control the overall error in an optimization method for stationary and … Read more

Multipoint secant and interpolation methods with nonmonotone line search for solving systems of nonlinear equations

Multipoint secant and interpolation methods are effective tools for solving systems of nonlinear equations. They use quasi-Newton updates for approximating the Jacobian matrix. Owing to their ability to more completely utilize the information about the Jacobian matrix gathered at the previous iterations, these methods are especially efficient in the case of expensive functions. They are … Read more