A Primal-Dual Augmented Lagrangian Penalty-Interior-Point Filter Line Search Algorithm

Interior-point methods have been shown to be very efficient for large-scale nonlinear programming. The combination with penalty methods increases their robustness due to the regularization of the constraints caused by the penalty term. In this paper a primal-dual penalty-interior-point algorithm is proposed, that is based on an augmented Lagrangian approach with an l2-exact penalty function. … Read more

Convergence and Complexity Analysis of a Levenberg-Marquardt Algorithm for Inverse Problems

The Levenberg-Marquardt algorithm is one of the most popular algorithms for finding the solution of nonlinear least squares problems. Across different modified variations of the basic procedure, the algorithm enjoys global convergence, a competitive worst case iteration complexity rate, and a guaranteed rate of local convergence for both zero and nonzero small residual problems, under … Read more

Stability and accuracy of Inexact Interior Point methods for convex quadratic programming

We consider primal-dual IP methods where the linear system arising at each iteration is formulated in the reduced (augmented) form and solved approximately. Focusing on the iterates close to a solution, we analyze the accuracy of the so-called inexact step, i.e., the step that solves the unreduced system, when combining the effects of both different … Read more

A Derivative-Free and Ready-to-Use NLP Solver for Matlab or Octave

This paper introduces a derivative-free and ready-to-use solver for nonlinear programs with nonlinear equality and inequality constraints (NLPs). Using finite differences and a sequential quadratic programming (SQP) approach, the algorithm aims at finding a local minimizer and no extra attempt is made to generate a globally optimal solution. Due to the use of finite differences, … Read more

A two-phase gradient method for quadratic programming problems with a single linear constraint and bounds on the variables

We propose a gradient-based method for quadratic programming problems with a single linear constraint and bounds on the variables. Inspired by the GPCG algorithm for bound-constrained convex quadratic programming [J.J. More’ and G. Toraldo, SIAM J. Optim. 1, 1991], our approach alternates between two phases until convergence: an identification phase, which performs gradient projection iterations … Read more

Outer-Product-Free Sets for Polynomial Optimization and Oracle-Based Cuts

Cutting planes are derived from specific problem structures, such as a single linear constraint from an integer program. This paper introduces cuts that involve minimal structural assumptions, enabling the generation of strong polyhedral relaxations for a broad class of problems. We consider valid inequalities for the set $S\cap P$, where $S$ is a closed set, … Read more

On the use of the energy norm in trust-region and adaptive cubic regularization subproblems

We consider solving unconstrained optimization problems by means of two popular globalization techniques: trust-region (TR) algorithms and adaptive regularized framework using cubics (ARC). Both techniques require the solution of a so-called “subproblem” in which a trial step is computed by solving an optimization problem involving an approximation of the objective function, called “the model”. The … Read more

A decoupled first/second-order steps technique for nonconvex nonlinear unconstrained optimization with improved complexity bounds

In order to be provably convergent towards a second-order stationary point, optimization methods applied to nonconvex problems must necessarily exploit both first and second-order information. However, as revealed by recent complexity analyzes of some of these methods, the overall effort to reach second-order points is significantly larger when compared to the one of approaching first-order … Read more

Iteration-Complexity of a Linearized Proximal Multiblock ADMM Class for Linearly Constrained Nonconvex Optimization Problems

This paper analyzes the iteration-complexity of a class of linearized proximal multiblock alternating direction method of multipliers (ADMM) for solving linearly constrained nonconvex optimization problems. The subproblems of the linearized ADMM are obtained by partially or fully linearizing the augmented Lagrangian with respect to the corresponding minimizing block variable. The derived complexity bounds do not … Read more

Bilevel optimization with a multiobjective problem in the lower level

Bilevel problems model instances with a hierarchical structure. Aiming at an efficient solution of a constrained multiobjective problem according with some pre-defined criterion, we reformulate this optimization but non standard problem as a classic bilevel one. This reformulation intents to encompass all the objectives, so that the properly efficient solution set is recovered by means … Read more