Optimal structure of gas transmission trunklines

In this paper, we consider the optimal design of a straight pipeline system. Suppose a gas pipeline is to be designed to transport a specified flowrate from the entry point to the gas demand point. Physical and contractual requirements at supply and delivery nodes are known as well as the costs to buy and lay … Read more

A second derivative SQP method: local convergence

Gould and Robinson (NAR 08/18, Oxford University Computing Laboratory, 2008) gave global convergence results for a second-derivative SQP method for minimizing the exact $\ell_1$-merit function for a \emph{fixed} value of the penalty parameter. To establish this result, we used the properties of the so-called Cauchy step, which was itself computed from the so-called predictor step. … Read more

A Sequential Quadratic Programming Algorithm with an Additional Equality Constrained Phase

A sequential quadratic programming (SQP) method is presented that aims to overcome some of the drawbacks of contemporary SQP methods. It avoids the difficulties associated with indefinite quadratic programming subproblems by defining this subproblem to be always convex. The novel feature of the approach is the addition of an equality constrained phase that promotes fast … Read more

Convergence of stochastic average approximation for stochastic optimization problems with mixed expectation and per-scenario constraints

We present a framework for ensuring convergence of sample average approximations to stochastic optimization problems that include expectation constraints in addition to per-scenario constraints. Citation Preprint ANL/MCS 1562-1108 Article Download View Convergence of stochastic average approximation for stochastic optimization problems with mixed expectation and per-scenario constraints

On a class of limited memory preconditioners for large scale linear systems with multiple right-hand sides

This work is concerned with the development and study of a class of limited memory preconditioners for the solution of sequences of linear systems. To this aim, we consider linear systems with the same symmetric positive definite matrix and multiple right-hand sides available in sequence. We first propose a general class of preconditioners, called Limited … Read more

Approximating Hessians in multilevel unconstrained optimization

We consider Hessian approximation schemes for large-scale multilevel unconstrained optimization problems, which typically present a sparsity and partial separability structure. This allows iterative quasi-Newton methods to solve them despite of their size. Structured finite-difference methods and updating schemes based on the secant equation are presented and compared numerically inside the multilevel trust-region algorithm proposed by … Read more

A proximal method for composite minimization

We consider minimization of functions that are compositions of convex or prox-regular functions (possibly extended-valued) with smooth vector functions. A wide variety of important optimization problems fall into this framework. We describe an algorithmic framework based on a subproblem constructed from a linearized approximation to the objective and a regularization term. Properties of local solutions … Read more

Generalized power method for sparse principal component analysis

In this paper we develop a new approach to sparse principal component analysis (sparse PCA). We propose two single-unit and two block optimization formulations of the sparse PCA problem, aimed at extracting a single sparse dominant principal component of a data matrix, or more components at once, respectively. While the initial formulations involve nonconvex functions, … Read more

Reformulations and Algorithms for the Optimization of Switching Decisions in Nonlinear Optimal Control

In model-based nonlinear optimal control switching decisions that can be optimized often play an important role. Prominent examples of such hybrid systems are gear switches for transport vehicles or valves in chemical engineering. Optimization algorithms need to take the discrete nature of the variables that model these switching decisions into account. Unnecessarily, for many applications … Read more

Convex Relaxations of Non-Convex Mixed Integer Quadratically Constrained Programs: Projected Formulations

A common way to produce a convex relaxation of a Mixed Integer Quadratically Constrained Program (MIQCP) is to lift the problem into a higher dimensional space by introducing variables $Y_{ij}$ to represent each of the products $x_i x_j$ of variables appearing in a quadratic form. One advantage of such extended relaxations is that they can … Read more